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e 400 for initial design, via LHS
e 800 for the BO process.

To make significant, the comparison between the two schemes, penalty and SVM-
CBO, they share the same initial design. They also share all the other choices, more
precisely the probabilistic surrogate model (GP) and the acquisition function (LCB),
so that the difference in the result can be only motivated by the usage, or not, of the
estimate of the feasible region. Since the value f(x*) is not known for this case study,
the Gap metrics cannot be used as metric, differently from the test functions reported
in Chap. 5. The minimum value of the objective function observed at the end of the
approaches, that is the energy cost associated to the best seen pump schedule, has
been directly considered as metric.

As already reported by the authors in their previous work (Candelieri et al. 2018),
assigning a penalty to function evaluations outside the feasible region has the aim
to move towards feasible points/regions. Although this is usual the usual solution
adopted, it is quite naive in this problem especially when the penalty cannot be made
dependent on the entity of violation. This leads to almost “flat” objective functions,
especially when the unknown feasible region results extremely narrow with respect
to the overall search space. As already reported, the real-life PSO case study seems
to be characterized by this kind of situation.

BO with penalty was not able to provide any improvement with respect to the
energy cost identified on the initial design that is 172.89€. On the contrary, SVM-
CBO was able to further reduce the energy to 168.60€, by identifying a new and
more efficient pump schedule. A significantly relevant result is that the improvement
has been registered exactly at the starting of phase 2, just shown for the test functions
in Chap. 5. This result proves that solving feasibility determination and constraining
the following sequential optimization process to an accurate estimate of the feasible
region can significantly improve the effectiveness and efficiency of the BO process.

A comment is due about the optimal value which is significantly lower than the
average pumping cost because the pilot zone was equipped with VSP’s and monitored
and maintained specifically for the european project.
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