Contents

Preface to the Second Edition XVPreface to the First German Edition XVIIPreface to the First English Edition XX

1	Introduction to Enzyme Technology 1
1.1	Introduction 1
1.1.1	What are Biocatalysts? 2
1.1.2	Bio- and Chemocatalysts – Similarities and Differences 2
1.2	Goals and Potential of Biotechnological Production Processes 4
1.3	Historical Highlights of Enzyme Technology/Applied Biocatalysis 8
1.3.1	Early Developments 8
1.3.2	Scientific Progress Since 1890: The Biochemical Paradigm; Growing
	Success in Application 10
1.3.3	Developments Since 1950 13
1.4	Biotechnological Processes: The Use of Isolated or Intracellular
	Enzymes as Biocatalysts 15
1.5	Advantages and Disadvantages of Enzyme-Based Production
	Processes 19
1.6	Goals and Essential System Properties for New or Improved Enzyme
	Processes 22
1.6.1	Goals 22
1.6.2	Essential System Properties for Rational Design of an Enzyme
	Process 24
1.6.3	Current Use and Potential of Enzyme Technology 27
	Exercises 28
	Literature 29
	References 29
2	Basics of Enzymes as Biocatalysts 33
2.1	Introduction 34
2.2	Enzyme Classification 35
2.3	Enzyme Synthesis and Structure 37
2.4	Enzyme Function and Its General Mechanism 41

VIII	Contents	
'	2.5	Free Energy Changes and the Specificity of Enzyme-Catalyzed Reactions 52
	2.6	Equilibrium- and Kinetically Controlled Reactions Catalyzed by Enzymes 54
	2.7	Kinetics of Enzyme-Catalyzed Reactions 58
	2.7.1	Quantitative Relations for Kinetic Characteristics and Selectivities of Enzyme-Catalyzed Reactions 59
	2.7.1.1	Turnover Number (k_{cat}) and Michaelis–Menten Constant (K_m) 59
	2.7.1.2	Stereoselectivities for Equilibrium- and Kinetically Controlled Reactions 63
	2.7.2	Dependence of k_{cat} , K_m , and Selectivities on pH, Temperature, Inhibitors, Activators, and Ionic Strength in Aqueous Solutions 68
	2.7.2.1	pH Dependence 69
	2.7.2.2	Temperature Dependence 71
	2.7.2.3	Binding of Activator and Inhibitor Molecules 73
	2.7.2.4	Influence of Ionic Strength 75
	2.8	End Points of Enzyme Processes and Amount of Enzyme Required to Reach the End Point in a Given Time 76
	2.8.1	Temperature Dependence of the Product Yield 79
	2.8.2	pH Dependence of the Yield at the End Point 79
	2.8.3	End Points for Kinetic Resolutions of Racemates 82
	2.9	Enzyme-Catalyzed Processes with Slightly Soluble Products and Substrates 83
	2.9.1	Enzyme-Catalyzed Processes in Aqueous Suspensions 84
	2.9.1.1	Changes in Rates, k_{cat} , K_m , and Selectivities in These Systems Compared with Homogeneous Aqueous Solutions 85
	2.9.2	Enzyme-Catalyzed Processes in Nonconventional Solvents Where Products and Substrates Are Dissolved (and the Enzyme Suspended) 85
	2.9.2.1	Changes in Rates, k_{cat} , K_m , and Selectivities in These Systems
		Compared with Homogeneous Aqueous Solutions 89
	2.10	Stability, Denaturation, and Renaturation of Enzymes 91
	2.11	Better Enzymes by Natural Evolution, <i>In Vitro</i> Evolution, or Rational Enzyme Engineering 94
	2.11.1	Changes in Enzyme Properties by Natural Evolution 96
	2.11.1.1	$k_{\rm cat}$ and $K_{\rm m}$ 96
	2.11.1.2	Enzyme Stability 99
	2.11.1.3	Stereoselectivity 100
	2.11.1.4	Selectivity in Kinetically Controlled Synthesis of Condensation
		Products 100
		Exercises 101
		Literature 105
		References 106

3	Enzyme Discovery and Protein Engineering 111
3.1	Enzyme Discovery 111
3.2	Strategies for Protein Engineering 115
3.2.1	Rational Protein Design 117
3.2.2	Directed (Molecular) Evolution 118
3.2.2.1	Methods to Create Mutant Libraries 118
3.2.2.2	Assay Systems 121
3.2.2.3	Examples 124
3.2.3	Focused Directed Evolution 129
3.3	Computational Design of Enzymes 131
3.0	Exercises 132
	References 132
4	Enzymes in Organic Chemistry 141
4.1	Introduction 141
4.1.1	Kinetic Resolution or Asymmetric Synthesis 143
4.2	Examples 144
4.2.1	Oxidoreductases (EC 1) 144
4.2.1.1	Dehydrogenases (EC 1.1.1, EC 1.2.1, EC 1.4.1) 144
4.2.1.2	Oxygenases 148
4.2.1.3	Peroxidases (EC 1.11.1.10) 157
4.2.1.4	Enoate Reductases (EC 1.4.1.31) 157
4.2.1.5	Monoamine Oxidases 159
4.2.2	Transaminases 161
4.2.3	Hydrolases (EC 3.1) 165
4.2.3.1	Lipases (EC 3.1.1.3) 165
4.2.3.2	Esterases (EC 3.1.1.1) 172
4.2.3.3	Peptidases, Acylases, and Amidases 176
4.2.3.4	Epoxide Hydrolases (EC 3.3.2.3) 178
4.2.3.5	Dehalogenases (EC 3.8.1.5) 182
4.2.3.6	Nitrilases (EC 3.5.5.1) and Nitrile Hydratases (EC 4.2.1.84) 182
4.2.3.7	Hydantoinases (EC 3.5.2) 187
4.2.4	Lyases (EC 4) 189
4.2.4.1	Hydroxynitrile Lyases (EC 4.1.2) 189
4.2.4.2	Aldolases (EC 4.1.2, EC 4.1.3) 193
4.2.5	Isomerases (EC 5) 197
	Exercises 199
	Literature 199
	References 199
5	Cells Designed by Metabolic Engineering as Biocatalysts
	for Multienzyme Biotransformations 209
5.1	Introduction 209
5.2	A Short Introduction to Metabolic Engineering 210
5.3	Examples 214

Contents	
5.3.1	1,3-Propanediol 214
5.3.2	Synthesis of "Biodiesel" and Other Fatty Acid
	Derivatives 215
5.3.3	Conversion of Cellulosics to Ethanol 216
5.3.4	Conversion of D-Fructose to D-Mannitol 218
5.3.5	Synthesis of L-Ascorbic Acid 219
5.3.6	Other Examples 220
	Exercises 222
	Literature 222
	References 222
6	Enzyme Production and Purification 225
6.1	Introduction 226
6.2	Enzyme Sources 227
6.2.1	Animal and Plant Tissues 227
6.2.2	Wild-Type Microorganisms 229
6.2.3	Recombinant Microorganisms 231
6.3	Improving Enzyme Yield 231
6.3.1	Processes that Influence the Enzyme Yield 233
6.4	Increasing the Yield of Periplasmic and Extracellular
	Enzymes 236
6.4.1	Penicillin Amidase 238
6.4.2	Lipase 243
6.5	Downstream Processing of Enzymes 245
6.5.1	Static and Dynamic Properties of Chromatographic Adsorbents that
	Must Be Known for a Rational Design of Chromatographic Protein
	Purification 249
6.5.1.1	Static Properties 249
6.5.1.2	Dynamic Properties 252
6.5.2	Chromatographic Purification of Enzymes: Problems and
	Procedures 255
6.5.2.1	Problems 255
6.5.2.2	Procedures 255
6.5.3	Chromatographic Purification and Conditioning of Technical and
	Therapeutic Enzymes 257
6.5.3.1	Technical Enzymes 257
6.5.3.2	Enzymes for Therapy and Diagnostics 259
6.6	Regulations Based on Risk Assessments/Safety Criteria that Influence
	the Production of Enzymes and Their Use for Analytical,
	Pharmaceutical, Scientific, and Technical Purposes 260
6.6.1	Regulations Governing the Use of Genetically Modified
	Microorganisms for the Production of Enzymes in Laboratories and
	Production Facilities 260
6.6.2	Regulations Governing the Use of Enzymes Produced in Wild-Type of
	Recombinant Organisms 265

X

	References 269
7	Application of Enzymes in Solution: Soluble Enzymes and Enzyme Systems 275
7.1	Introduction and Areas of Application 276
7.1.1	The Impact of Genetic Engineering 278
7.1.2	Medium Design 279
7.1.3	Safety Aspects 280
7.2	Space–Time Yield and Productivity 281
7.3	Examples for the Application of Enzymes in Solution 286
7.3.1	Survey 286
7.3.1.1	Food Applications 289
7.3.1.2	Other Industrial Applications 290
7.3.2	Starch Processing 291
7.3.3	Detergents 294
7.4	Membrane Systems and Processes 297
	Exercises 305
	Literature 307
	References 308
8	Immobilization of Enzymes (Including Applications) 313
8.1	Principles 313
8.1.1	Parameters of Immobilization 317
8.2	Carriers 319
8.2.1	Inorganic Carriers 321
8.2.2	Polysaccharides 321
8.2.3	Synthetic Polymers 326
8.3	Binding Methods 330
8.3.1	Adsorption 330
8.3.2	Covalent Binding 331
8.4	Examples: Application of Immobilized Enzymes 335
8.4.1	Hydrolysis and Biotransformation of Carbohydrates 335
8.4.2	Hydrolysis and Synthesis of Penicillins and Cephalosporins 345
8.4.3	Further Processes 346
8.4.3.1	Amino Acid, Peptide, and Amide Synthesis 346
8.4.3.2	Application of Lipases 348
	Exercises 349
	Literature 352
	References 352
9	Immobilization of Microorganisms and Cells 359
9.1	Introduction 359
9.2	Fundamental Aspects 362

Exercises 267

Literature 268

Contents	
9.3	Immobilization by Aggregation/Flocculation 364
9.4	Immobilization by Entrapment 368
9.4.1	Entrapment in Polymeric Networks 368
9.4.2	Entrapment in Ionotropic Gels 369
9.4.2.1	Principle 369
9.4.2.2	Examples 372
9.5	Adsorption 375
9.6	Adhesion 376
9.6.1	Basic Considerations 377
9.6.2	Applications 383
9.6.2.1	Adherent Mammalian Cells for Biopharmaceuticals Production 383
9.6.2.2	Anaerobic Wastewater Treatment 384
9.6.2.3	Nitrogen Elimination (Nitrification and Denitrification) 391
9.6.2.4	Exhaust Gas Purification 391
9.7	Perspectives 393
9.7.1	Biofilm Catalysis 393
9.7.2	Microbial Fuel Cells 396
	Exercises 399
	References 402
10	Characterization of Immobilized Biocatalysts 411
10.1	Introduction 412
10.2	Factors Influencing the Space–Time Yield of Immobilized Biocatalysts 413
10.3	Effectiveness Factors for Immobilized Biocatalysts 414
10.4	Mass Transfer and Reaction 416
10.4.1	Maximal Reaction Rate of Immobilized Biocatalysts as a Function of Particle Radius 416
10.4.2	Calculation of Effectiveness Factors and Concentration Profiles Inside and Outside the Particles 418
10.5	Space-Time Yields and Effectiveness Factors for Different
10 5 1	Reactors 422
10.5.1	Continuous Stirred Tank Reactor 423
10.5.2	Packed Bed Reactor or Stirred Batch Reactor 424
10.5.3	Comparison of CST and PB Reactors 425
10.6	Determination of Essential Properties of Immobilized Biocatalysts 425
10.6.1	Physicochemical Properties 428
10.6.1.1	Immobilized Biocatalyst Distribution and Conformation 429
10.6.1.2	Stationary Charge Density in the Support 429
10.6.2	Kinetic Characterization of Immobilized Biocatalysts: Influence of Support Properties on the Nano- and Micrometer Level in Aqueous and Other Systems 430
10.6.2.1	Determination of V'_{max} , k'_{cat} , Substrate/Product Concentration, and pH Gradients 431

XII

10.6.2.2	$K'_{\rm m}$ and $K'_{\rm i}$ 434
10.6.2.3	Selectivities 435
10.6.2.4	Determinations of Effectiveness Factors 436
10.6.3	Productivity and Stability under Process Conditions 436
10.0.3	Comparison of Calculated and Experimental Data for Immobilized
10.7	Biocatalysts 437
10.8	Application of Immobilized Biocatalysts for Enzyme Processes
10.0	in Aqueous Suspensions 439
10.9	Improving the Performance of Immobilized Biocatalysts 441
	Exercises 443
	References 445
11	Reactors and Process Technology 449
11	General Aspects, Biochemical Engineering, and Process
11.1	Sustainability 449
1111	Biochemical Engineering Aspects 450
11.1.1	Process Sustainability and Ecological Considerations 452
11.1.2	
11.2	Types of Reactors 454 Regis Types and Magg Palances 455
11.2.1	Basic Types and Mass Balances 455 Other Reactor Types and Configurations: Application Examples 460
11.2.2	Other reactor 1/pes and Configurations, 1-photocol 2-man-pes
11.3	Residence Time Distribution, Mixing, Pressure Drop, and Mass
11 2 1	Transfer in Reactors 466
11.3.1	Scale-Up, Dimensionless Numbers 466
11.3.2	Residence Time Distribution 468
11.3.3	Mixing in Stirred Tank Reactors 471
11.3.4	Mass Transfer in Reactors 476
11.3.5	Pressure Drop and Fluidization in Tubular Reactors 477
11.4	Process Technology 478
11.4.1	Survey 478
11.4.2	Process Integration 479
11.4.3	Reactor Instrumentation 486
	Exercises 486
	Literature 488
	References 488
12	Case Studies 493
12.1	Starch Processing and Glucose Isomerization 493
12.1.1	Starch Processing 493
12.1.2	The Manufacture of Glucose–Fructose Syrup 497
12.2	Biofuels from Biomass 501
12.2.1	Starch-Based Ethanol Production 502
12.2.2	Lignocellulose-Based Biofuels 507
12.2.2.1	General 507
12.2.2.2	Raw Materials 508
12.2.2.3	Pretreatment 509

1	Contents	
٠	12.2.2.4	Enzymes 512
	12.2.2.5	Processing and Reaction Engineering 517
	12.2.2.6	Pilot Studies 519
	12.2.2.7	Alternative Biocatalyst-Based Biofuels 520
	12.3	Case Study: the One-Step Enzymatic Process to Produce 7-ACA
		from Cephalosporin C 521
	12.3.1	Enzyme Processes for the Production of β-Lactam Antibiotics 521
	12.3.2	Overall Process for the Production of 7-ACA 531
	12.3.3	Conversion of Cephalosporin C to 7-ACA 533
	12.3.4	Reaction Characterization and Identification of Constrainsts: Hydrolysis
		of Cephalosporin C 533
	12.3.5	Enzyme Characterization and Identification of Constraints:
		Cephalosporin Acylase (or Glutaryl Acylase or Amidase) 535
	12.3.6	Evaluation of Process Options 536
	12.3.6.1	Process Window 536
	12.3.6.2	Suitable Reactors and pH-Controlling Buffers 537
	12.3.6.3	Reaction End Point and Immobilized Enzyme Requirement for
		Minimum Space–Time Yield 539
	12.3.6.4	Product Isolation 539
	12.4	Case Study: Biocatalytic Process for the Synthesis of the Lipitor

Appendix A: The World of Biotechnology Information: Seven Points for Reflecting on Your Information Behavior 553

Appendix B: Solutions to Exercises 565

Side Chain 540 Exercises 543 References 544

Appendix C: Symbols and Abreviations 585

Index 591

XIV