Contents

Preface		xv
Conven	Conventions and Notation	
Data an	Data and Software	
1. Intr	oduction to Spectral Analysis	1
1.0	Introduction	1
1.1	Some Aspects of Time Series Analysis	1
	Comments and Extensions to Section 1.1	8
1.2	Spectral Analysis for a Simple Time Series Model	9
1.3	Nonparametric Estimation of the Spectrum from Data	17
1.4	Parametric Estimation of the Spectrum from Data	22
1.5	Uses of Spectral Analysis	23
1.6	Exercises	25
2. Stat	ionary Stochastic Processes	30
2.0	Introduction	30
2.1	Stochastic Processes	30
2.2	Notation	32
2.3	Basic Theory for Stochastic Processes	33
	Comments and Extensions to Section 2.3	34
2.4	Real-Valued Stationary Processes	35
2.5	Complex-Valued Stationary Processes	39
2.6	Examples of Discrete Parameter Stationary Processes	41
2.7	Comments on Continuous Parameter Processes	49

x		Contents	
	2.8	Use of Stationary Processes as Models for Data	49
	2.9	Exercises	53
3.	Dete	erministic Spectral Analysis	56
	3.0	Introduction	56
	3.1	Fourier Theory - Continuous Time/Discrete Frequency	57
		Comments and Extensions to Section 3.1	62
	3.2	Fourier Theory - Continuous Time and Frequency	64
		Comments and Extensions to Section 3.2	68
	3.3	Band-Limited and Time-Limited Functions	69
	3.4	Continuous/Continuous Reciprocity Relationships	70
	3.5	Concentration Problem – Continuous/Continuous Case	75
	3.6	Convolution Theorem - Continuous Time and Frequency	81
		Comments and Extensions to Section 3.6	84
	3.7	Fourier Theory – Discrete Time/Continuous Frequency	87
	3.8	Aliasing Problem – Discrete Time/Continuous Frequency	97
	3.9	Concentration Problem – Discrete/Continuous Case	101
	3.10	Fourier Theory – Discrete Time and Frequency	108
		Comments and Extensions to Section 3.10	113
	3.11	Summary of Fourier Theory	116
	3.12	Exercises	120
4.	Four	dations for Stochastic Spectral Analysis	126
	4.0	Introduction	126
	4.1	Spectral Representation of Stationary Processes	127
		Comments and Extensions to Section 4.1	134
	4.2	Alternative Definitions for the Spectral Density Function	136
	4.3	Basic Properties of the Spectrum	138
		Comments and Extensions to Section 4.3	140
	4.4	Classification of Spectra	141
	4.5	Sampling and Aliasing	144
		Comments and Extensions to Section 4.5	147
	4.6	Comparison of SDFs and ACVSs as Characterizations	147
	4.7	Exercises	149
5.	Line	ar Time-Invariant Filters	153
	5.0	Introduction	153

Basic Theory of LTI Analog Filters

Basic Theory of LTI Digital Filters

5.3 Convolution as an LTI filter

Comments and Extensions to Section 5.1

5.1

5.2

	5.5	Some Filter Terminology	169
	5.6	Interpretation of Spectrum via Band-Pass Filtering	170
	5.7	An Example of LTI Digital Filtering	171
		Comments and Extensions to Section 5.7	176
	5.8	Least Squares Filter Design	176
	5.9	Use of DPSSs in Low-Pass Filter Design	180
	5.10	Exercises	183
1000	Non	parametric Spectral Estimation	187
	6.0	Introduction	187
	6.1	Estimation of the Mean	188
		Comments and Extensions to Section 6.1	188
	6.2	Estimation of the Autocovariance Sequence	190
		Comments and Extensions to Section 6.2	194
	6.3	A Naive Spectral Estimator – the Periodogram	196
	1.77/22/22	Comments and Extensions to Section 6.3	204
	6.4	Bias Reduction – Tapering	206
		Comments and Extensions to Section 6.4	215
	6.5	Bias Reduction – Prewhitening	218
		Comments and Extensions to Section 6.5	219
	6.6	Statistical Properties of Direct Spectral Estimators	220
		Comments and Extensions to Section 6.6	228
	6.7	Smoothing Direct Spectral Estimators	235
		Comments and Extensions to Section 6.7	242
	6.8	First Moment Properties of Lag Window Estimators	243
		Comments and Extensions to Section 6.8	245
	6.9	Second Moment Properties of Lag Window Estimators	246
		Comments and Extensions to Section 6.9	250
	6.10	Asymptotic Distribution of Lag Window Estimators	254
	6.11	Examples of Lag Windows	258
		Comments and Extensions to Section 6.11	269
	6.12	Choice of Lag Window	271
	6.13	Choice of Lag Window Parameter	274
	6.14	Estimation of Spectral Bandwidth	277
	6.15	Automatic Smoothing of Log Spectral Estimators	280
	6.16	Computational Details	284
	6.17	Welch's Overlapped Segment Averaging	289
		Comments and Extensions to Section 6.17	294
	6.18	Examples of Nonparametric Spectral Analysis	295
	6.19	Comments on Complex-Valued Time Series	317
	6.20	Summary of Nonparametric Spectral Estimation	318
	6 21	Exercises	322

Contents

6.

xi

xii		Contents	
7.	Mul	titaper Spectral Estimation	331
	7.0	Introduction	331
	7.1	A Motivating Example	333
		Comments and Extensions to Section 7.1	344
	7.2	Multitapering of Gaussian White Noise	347
	7.3	Quadratic Spectral Estimators and Multitapering	351
	7.4	Regularization and Multitapering	361
		Comments and Extensions to Section 7.4	371
	7.5	Multitaper Spectral Analysis of Ocean Wave Data	371
	7.6	Summary of Multitaper Spectral Estimation	374
	7.7	Exercises	375
8.	Calc	ulation of Discrete Prolate Spheroidal Sequences	378
	8.0	Introduction	378
	8.1	Calculating DPSSs from Defining Equation	379
	8.2	Calculating DPSSs from Numerical Integration	384
	8.3	Tridiagonal Formulation	386
	8.4	Substitutes for the DPSSs	387
	8.5	Exercises	390
9.	Para	metric Spectral Estimation	391
	9.0	Introduction	391
	9.1	Notation	391
	9.2	The Autoregressive Model	392
	9.3	The Yule-Walker Equations	393
		Comments and Extensions to Section 9.3	396
	9.4	The Levinson–Durbin Recursions	397
		Comments and Extensions to Section 9.4	404
	9.5	Burg's Algorithm	414
		Comments and Extensions to Section 9.5	417
	9.6	The Maximum Entropy Argument	420
	9.7	Least Squares Estimation	426
		Comments and Extensions to Section 9.7	428
	9.8	Maximum Likelihood Estimation	429
		Comments and Extensions to Section 9.8	433
	9.9	Order Selection for $AR(p)$ Processes	434
	9.10	Prewhitened Spectral Estimators and An Example	437
	9.11	Use of Other Models for Parametric SDF Estimation	442
	9.12	Confidence Intervals Using AR Spectral Estimators	445
		Comments and Extensions to Section 9.12	449
	9.13	Comments on Complex-Valued Time Series	450
	9.14	Summary of Parametric Spectral Analysis	451

		Contents	xiii
	9.15 1	Exercises	454
10.	Harr	monic Analysis	456
	10.0	Introduction	456
	10.1	Harmonic Processes with Purely Discrete Spectra	457
	10.2	Harmonic Processes with Discrete Spectra	460
		Comments and Extensions to Section 10.2	465
	10.3	Spectral Representation of Discrete and Mixed Spectra	467
		Comments and Extensions to Section 10.3	468
	10.4	An Example from Tidal Analysis	468
		Comments and Extensions to Section 10.4	473
	10.5	A Special Case of Unknown Frequencies	473
		Comments and Extensions to Section 10.5	474
	10.6	General Case of Unknown Frequencies	475
		Comments and Extensions to Section 10.6	479
	10.7	An Artificial Example from Kay and Marple	480
		Comments and Extensions to Section 10.7	484
	10.8	Tapering and the Identification of Frequencies	486
	10.9	Tests for Periodicity - White Noise Case	489
	10.10	Periodicity Tests with Ocean Noise Data	495
	10.11	Tests for Periodicity - Colored Noise Case	496
		Comments and Extensions to Section 10.11	500
	10.12	Completing a Harmonic Analysis	501
	10.13	Harmonic Analysis of River Flow Data	504
	10.14	A Parametric Approach to Harmonic Analysis	514
		Comments and Extensions to Section 10.14	520
	10.15	Parametric Approach with River Flow Data	520
		Comments and Extensions to Section 10.15	524
	10.16	Problems with the Parametric Approach	525
	10.17	Singular Value Decomposition Approach	531
		Comments and Extensions to Section 10.17	537
	10.18	SVD Approach with River Flow Data	537
	10.19	Summary of Harmonic Analysis	539
	10.20	Exercises	544
Ref	erence	28	546
Au	Author Index		
Sub	Subject Index		

Subject Index