Detailed Contents

strength of a binding interaction is defined the dissociation constant (K _d) dissociation constant is related to the nding energy of the interaction dissociation constant is also related rates of binding and dissociation OTEIN INTERACTIONS IN THEIR LULAR AND MOLECULAR CONTEXT apparent dissociation constant can be rongly affected by the local cellular environment and other binding partners affinity and specificity depends on biological nction and ligand concentrations	2 2 3
the dissociation constant (K _d) dissociation constant is related to the inding energy of the interaction dissociation constant is also related rates of binding and dissociation OTEIN INTERACTIONS IN THEIR LULAR AND MOLECULAR CONTEXT apparent dissociation constant can be rongly affected by the local cellular revironment and other binding partners a ffinity and specificity depends on biological inction and ligand concentrations	2 2 3 3 3 3 3 3
dissociation constant is related to the ending energy of the interaction dissociation constant is also related rates of binding and dissociation of the interaction o	2 2 3 3 3
nding energy of the interaction dissociation constant is also related rates of binding and dissociation OTEIN INTERACTIONS IN THEIR LULAR AND MOLECULAR CONTEXT apparent dissociation constant can be rongly affected by the local cellular evironment and other binding partners a ffinity and specificity depends on biological anction and ligand concentrations	30
dissociation constant is also related rates of binding and dissociation OTEIN INTERACTIONS IN THEIR LULAR AND MOLECULAR CONTEXT apparent dissociation constant can be rongly affected by the local cellular rivironment and other binding partners a ffinity and specificity depends on biological nction and ligand concentrations	30
rates of binding and dissociation DIEIN INTERACTIONS IN THEIR LULAR AND MOLECULAR CONTEXT apparent dissociation constant can be rongly affected by the local cellular rivironment and other binding partners a diffinity and specificity depends on biological nction and ligand concentrations	30
TEIN INTERACTIONS IN THEIR LULAR AND MOLECULAR CONTEXT apparent dissociation constant can be rongly affected by the local cellular vironment and other binding partners a ffinity and specificity depends on biological nction and ligand concentrations	3
LULAR AND MOLECULAR CONTEXT apparent dissociation constant can be rongly affected by the local cellular svironment and other binding partners a ffinity and specificity depends on biological nction and ligand concentrations	30
apparent dissociation constant can be rongly affected by the local cellular avironment and other binding partners a affinity and specificity depends on biological action and ligand concentrations	30
rongly affected by the local cellular vironment and other binding partners l affinity and specificity depends on biological nction and ligand concentrations	
vironment and other binding partners l affinity and specificity depends on biological nction and ligand concentrations	
l affinity and specificity depends on biological nction and ligand concentrations	
nction and ligand concentrations	3
teraction affinities and specificities	32
action affinity and specificity can be	
dependently modulated	34
ultiple ligands	35
	36
# - 10 (20 (20 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1	00
	36
	37
a nomogenersy	38
WATCHIES.	38
rences	40
nter 3	
	13
JCIPLES OF ENZYME CATALYSIS	44
em useful for transmitting signals in the cell	44
hance the rate of chemical reactions	45
mes can drive reactions in one direction	
energetic coupling	46
OSTERIC CONFORMATIONAL CHANGES	47
	47
	teraction affinities and specificities raction affinity and specificity can be dependently modulated perativity involves the coupled binding of sultiple ligands rese molecular mechanisms underlie operativity perative binding has a variety of national consequences ein assemblies differ in their stability and homogeneity mary stions rences pter 3 naling Enzymes and Their Allosteric sulation NCIPLES OF ENZYME CATALYSIS rese have a number of properties that make em useful for transmitting signals in the cell rese use a variety of mechanisms to hance the rate of chemical reactions renergetic coupling OSTERIC CONFORMATIONAL CHANGES formational flexibility of proteins enables

Signaling proteins employ diverse classes of		Questions	80
conformational rearrangements	48	References	82
PROTEIN PHOSPHORYLATION AS		Chapter 4	
A REGULATORY MECHANISM	49	Role of Post-Translational	
Phosphorylation can act as a regulatory mark	49	Modifications in Signaling	85
Phosphorylation can either disrupt or		THE LOGIC OF POST-TRANSLATIONAL	
induce protein structure	50	REGULATION	85
PROTEIN KINASES	52		00
The structure and catalytic mechanism of protein kinases are conserved	52	Proteins can be covalently modified by the addition of simple functional groups	86
The activation loop and C-helix are conserved molecular levers that conformationally control kinase activity	54	Proteins can also be covalently modified by the addition of sugars, lipids, and even proteins Post-translational modifications can alter	87
Insulin receptor kinase activity is controlled via activation-loop phosphorylation	54	protein structure, localization, and stability Post-translational control machinery often	88
Phosphorylation mediates long-range	04	works as part of "writer/eraser/reader" systems	90
conformational regulation of Src family kinases	55	Post-translational modifications allow very rapid	
Multiple binding interactions regulate		signaling and transmission of spatial information	92
protein kinase substrate specificity	56	INTERPLAY BETWEEN POST-TRANSLATIONAL	
Protein kinases can be divided into nine families	58	MODIFICATIONS	92
PROTEIN PHOSPHATASES	60	A post-translational modification can	
Serine/threonine phosphatases are metalloenzymes	60	promote or antagonize other modifications	93
Most tyrosine phosphatases utilize a catalytic	00	p53 is tightly regulated by a wide variety	
cysteine residue	62	of post-translational modifications	95
Tyrosine phosphatases are regulated by modular domains while serine/threonine phosphatases		The level and activity of p53 are regulated by ubiquitylation and acetylation	96
often associate with regulatory accessory subunits	64	Additional modifications further fine-tune p53 activity	96
G PROTEIN SIGNALING	65	PROTEIN PHOSPHORYLATION	97
G proteins are conformational switches	00	Phosphorylation is often coupled with protein	tion is
controlled by two opposing enzymes	65	interactions	97
The presence of the GTP γ-phosphate determines		Kinases and phosphatases vary in their	
the structure of G protein switch I and II regions	66	substrate specificity	99
There are two major classes of signaling G proteins	67	Multiple phosphorylation of proteins can	
Subfamilies of small G proteins regulate		arise by different mechanisms	100
diverse biological functions	67	Histidine and other amino acids can be	404
Many upstream receptors feed into a small set of		phosphorylated, especially in prokaryotes	101
common heterotrimeric G proteins	68	Two-component systems and histidine	100
REGULATORY ENZYMES FOR G PROTEIN		phosphorylation are also present in eukaryotes	103
SIGNALING	70	ADDITION OF UBIQUITIN AND RELATED	2000
G-protein-coupled receptors act as GEFs		PROTEINS	104
for heterotrimeric G proteins	71	Specialized enzymes mediate the addition	101
Distinct GEF and GAP domains regulate		and removal of ubiquitin	104
specific small G protein families	71	E3 ubiquitin ligases determine which proteins	105
GEFs catalyze GDP/GTP exchange by deforming the nucleotide-binding pocket	70	will be ubiquitylated	100
GAPs order the catalytic machinery for hydrolysis	73	Ubiquitin-binding domains read ubiquitin-mediated signals in diverse cellular activities	106
Regulators of G protein signaling (RGS) proteins	74		
act as GAPs for heterotrimeric G proteins	75	HISTONE ACETYLATION AND METHYLATION	107
Additional mechanisms are used to	75	Chromatin structure is regulated by post-	
fine-tune the activity of G proteins	75	translational modification of histones and associated proteins	108
SIGNALING ENZYME CASCADES	75	Two writer/eraser/reader systems are based on	
The three-tiered MAP kinase cascade forms	10	protein methylation and acetylation	109
a signaling module in all eukaryotes	76	Chromatin modification in transcription is dynamic	
Scaffold proteins often organize MAPK cascades	77	and leads to highly cooperative interactions	110
G protein activity can also be regulated by		Summary	112
signaling cascades	79	Questions	113
Summary	80	References hand of balances and management a	114

Chapter 5 Subcellular Localization of Signaling Molecules	115	Small signaling mediators are controlled by an interplay of their production and elimination Small signaling mediators exert their effects	136
LOCALIZATION AS A SIGNALING CURRENCY	115	by binding downstream effectors	136
Changes in subcellular localization can transmit information	116	Small signaling mediators can lead to fast, distant, and amplified signal transmission	137
Subcellular localization can be regulated by a variety of mechanisms	117	Small signaling mediators can generate complex temporal and spatial patterns	138
CONTROL OF NUCLEAR LOCALIZATION	117	CLASSES OF SMALL SIGNALING MEDIATORS	139
Short, modular peptide motifs direct nuclear import and export	118	Small signaling mediators have a wide range of physical properties	140
Nuclear transport is controlled by shuttle proteins and the G protein Ran	118	The cyclic nucleotides cAMP and cGMP are produced by cyclase enzymes and destroyed	140
Phosphorylation of transcription factor Pho4		by phosphodiesterases	140 141
regulates nuclear import and export	119	Cyclic nucleotides regulate diverse cellular activities The regulatory (R) subunit of protein kinase	141
Nuclear import of STATs is regulated by	120	A is a conformational sensor of cAMP binding	142
phosphorylation and conformational change Localization of MAP kinases is regulated	120	Some small signaling mediators are	
by association with nuclear and cytosolic		derived from membrane lipids	143
binding partners	121	PLC generates two signaling mediators,	
Notch nuclear localization is regulated by		IP ₃ and DAG	144
proteolytic cleavage	122	Activation of protein kinase C is regulated	144
CONTROL OF MEMBRANE LOCALIZATION	122	by IP ₃ and DAG	144
Proteins can span the membrane or be		CALCIUM SIGNALING	145
associated with it peripherally	122	Activation of Ca ²⁺ channels is a common means of regulation	146
Proteins can be covalently modified with	400	Ca2+ influx is rapid and local	140
lipids after translation	123	Calmodulin is a conformational sensor of	147
Modular lipid-binding domains are important for	124	intracellular calcium levels	147
regulated association of proteins with membranes Some lipid-modified proteins can reversibly	124	Signaling can lead to propagating Ca2+ waves	148
associate with membranes	125	SPECIFICITY AND REGULATION	149
Coupling effector protein activation to		Scaffold proteins can increase input and output	110
membrane recruitment is a common theme	100	specificity of small-molecule signaling	150
in signaling	126	AKAP scaffold proteins can also regulate dynamics	
Akt kinase is regulated by membrane recruitment and phosphorylation	126	of cAMP signaling	150
		Summary	152
MODULATION OF SIGNALING BY MEMBRANE TRAFFICKING	127	Questions	152
Proteins can be internalized by a variety	10.	References	153
of mechanisms	127	Chapter 7	
Internalization of receptors can modulate		Membranes, Lipids, and Enzymes	
signal transduction	128	That Modify Them	155
$TGF\beta$ signaling output depends on the	100	BIOLOGICAL MEMBRANES AND THEIR	
mechanism of receptor internalization	129	PROPERTIES	155
Retrograde signaling allows effects distant from the site of ligand binding	130	Biological membranes consist of a variety of polar lipids Structural properties of membrane lipids favor	156
Ras isoforms in distinct subcellular locations	130	the formation of bilayers	157
have different signaling outputs	132	The composition of the membrane determines	400
Summary	132	its physical properties	158
Questions	132	There are fundamental differences between biochemistry in solution and on the membrane	160
References	102		100
Chantar 6		LIPID-MODIFYING ENZYMES USED	101
Chapter 6 Second Messengers: Small Signaling		IN SIGNALING Cleavage of membrane lipids by phospholipases	161
Mediators	135	generates a variety of bioactive products	161
PROPERTIES OF SMALL SIGNALING		A variety of lipid kinases and phosphatases	3
MEDIATORS	135	are involved in signaling	163

EXAMPLES OF MAJOR LIPID SIGNALING PATHWAYS	164	The voltage-gated potassium channel provides clues to mechanisms of gating and ion specificity	200
Phosphoinositides can serve as membrane binding sites and as a source of signaling mediators	164	Ligand-gated ion channels play a central role in neurotransmission	202
Phosphoinositide species provide a set of membrane		MEMBRANE-PERMEABLE SIGNALING	204
binding signals	166	Nitric oxide mediates short-range signaling	
Phospholipase D generates the important signaling mediator, phosphatidic acid (PA)	168	in the vascular system	204
Phospholipase D plays a role in mTOR signaling	169	O ₂ binding regulates the response to hypoxia	205
The metabolism of sphingomyelin generates	100	The receptors for steroid hormones are transcription factors	206
a host of signaling mediators	170	DOWN-REGULATION OF RECEPTOR SIGNALING	208
Phospholipase A ₂ generates the precursor for		Ubiquitylation regulates the endocytosis, recycling,	Part I
a family of potent inflammatory mediators	172	and degradation of cell-surface receptors	209
Summary	174	G protein coupled receptors are desensitized	
Questions	174	by phosphorylation and adaptor binding	211
References	174	Summary	213
Chapter 8		Questions	213
Information Transfer Across the Membrane	177	References	215
PRINCIPLES OF TRANSMEMBRANE SIGNALING	177	Chapter 9	
The cell must process and respond to a		Regulated Protein Degradation	217
diversity of environmental cues	178	GENERAL PROPERTIES AND EXAMPLES OF	
Three general strategies are used to	THE STATE OF	SIGNAL-REGULATED PROTEOLYSIS	217
transfer information across the membrane	179	Proteases are a diverse group of enzymes	218
Many drugs target receptors	180	Blood coagulation is regulated by a	
TRANSDUCTION STRATEGIES USED BY	****	cascade of proteases	219
TRANSMEMBRANE RECEPTORS	180	Regulated proteolysis by metalloproteases	
Receptors with multiple membrane-spanning segments undergo conformational changes		can generate signaling molecules and alter the extracellular environment	220
upon ligand binding	180	ADAMs regulate signaling pathways	Times
Receptors with a single membrane-spanning segment form higher-order assemblies upon ligand binding	181	by cleaving membrane-associated proteins	221
Receptor clustering confers advantages for	101	MMPs participate in remodeling the extracellular environment	222
signal propagation	182	Proteolysis activates the thrombin receptor	223
G-PROTEIN-COUPLED RECEPTORS	184	Regulated intramembrane proteolysis (RIP) is	
G-protein-coupled receptors have intrinsic		an essential step in signaling by some receptors	224
enzymatic activity	184	UBIQUITIN AND THE PROTEASOME	
Signaling by GPCRs can be very fast and		DEGRADATION PATHWAY	225
lead to enormous signal amplification	186	The proteasome is a specialized molecular machine	000
TRANSMEMBRANE RECEPTORS ASSOCIATED		that degrades intracellular proteins	225
WITH ENZYMATIC ACTIVITY	186	The cell cycle is controlled by two large ubiquitin-conjugating complexes	226
Receptor tyrosine kinases control important cell fate decisions in multicellular eukaryotes	186	SCF recognizes specific phosphorylated proteins,	4100
TGFβ receptors are serine/threonine	100	targeting them for destruction	227
kinases that activate transcription factors	187	Two APC species act at distinct points in	
Some receptors have intrinsic protein		the cell cycle	228
phosphatase or guanylyl cyclase activity	189	NF-κB is controlled by regulated	000
Noncovalent coupling of receptors to protein		degradation of its inhibitor	230
kinases is a common signaling strategy Some receptors use complex activation	189	CASPASE-MEDIATED CELL DEATH PATHWAYS	232
pathways that involve both kinase activation		Apoptosis is an orderly and highly regulated form	232
and proteolytic processing	193	of cell death The estimity of engages is tightly regulated	233
Wnt and Hedgehog are two important		The activity of caspases is tightly regulated The extrinsic pathway links cell death receptors	200
signaling pathways in development	194	to caspase activation	235
A variety of receptors couple to proteolytic activities	197	Mitochondria orchestrate the intrinsic cell death	
GATED CHANNELS	199		238
Gated channels share a similar overall structure	199	Summary	241

Questions	241	Certain plant protein kinases are regulated by	
References	242	modular light-gated domains	267
		Regulation of the neutrophil NADPH oxidase	nec
Chapter 10		by modular interactions	268
The Modular Architecture and Evolution of Signaling Proteins	243	CREATING NEW FUNCTIONS THROUGH DOMAIN RECOMBINATION	269
MODULAR PROTEIN DOMAINS	244	Some modular domain rearrangements can lead	
Protein domains usually have a globular structure	244	to cancer	269
Bioinformatic approaches can identify protein domains	244	Modules can be recombined experimentally	
Domains can be composed of several smaller repeats	245	to engineer new signaling behaviors	270
Protein domains often act as recognition modules	246	Summary	272
INTERACTION DOMAINS THAT RECOGNIZE POST-TRANSLATIONAL MODIFICATIONS	249	Questions References	272 273
SH2 domains bind phosphotyrosine-containing sites	249	AND THE PERSON NAMED IN COLUMN TWO	
Some SH2 domains are elements of larger binding	T. 70.00	Chapter 11	
structures	252	Information Processing by Signaling Devices and Networks	275
Several different types of interaction domains recognize phosphotyrosine	252	SIGNALING SYSTEMS AS INFORMATION-	
Multiple domains recognize motifs phosphorylated		PROCESSING DEVICES	276
on serine/threonine	254	Signaling devices can be considered as state machines	276
14-3-3 proteins recognize specific phosphoserine/ phosphothreonine motifs	254	Signaling devices are organized in a hierarchical fashion	277
Interaction domains recognize acetylated and methylated sites	255	Signaling devices face a variety of challenges in input detection	278
Ubiquitylation regulates protein-protein interactions	256	Proteins can function as simple signaling devices	279
		INTEGRATING MULTIPLE SIGNALING INPUTS	281
INTERACTION DOMAINS THAT RECOGNIZE UNMODIFIED PEPTIDE MOTIFS OR PROTEINS	257	Logic gates process information from multiple inputs Simple peptide motifs can integrate multiple	281
Proline-rich sequences are favorable	257	post-translational modification inputs	282
recognition motifs SH3 demains hind aroling risk motifs	258	Cyclin-dependent kinase is an allosteric	
SH3 domains bind proline-rich motifs PDZ domains recognize C-terminal peptide motifs	258	signal-integrating device	283
Protein interaction domains can form dimers	200	Modular signaling proteins can integrate multiple	
or oligomers	259	inputs Transcriptional promoters can integrate input from	284
INTERACTION DOMAINS THAT RECOGNIZE PHOSPHOLIPIDS	260	multiple signaling pathways	285
PH domains form a major class of phosphoinositide-		RESPONDING TO THE STRENGTH OR	900
binding domains	260	DURATION OF AN INPUT Signaling systems can respond to signal amplitude	286
FYVE domains are phospholipid-binding domains		in a graded or a digital manner	288
found in endocytic proteins	261	An enzyme can behave as a switch through	200
BAR domains bind and stabilize curved membranes	262	cooperativity	289
CREATING COMPLEX FUNCTIONS BY	-	Networks can also yield switchlike activation	290
COMBINING INTERACTION DOMAINS	262	Signaling systems can distinguish between	
Recombination of domains occurs through evolution	262	transient and sustained input	292
Combinations of interaction domains or motifs can be used as a scaffold for the assembly of	263	MODIFYING THE STRENGTH OR DURATION OF OUTPUT	294
signaling complexes	200	Signaling pathways often amplify signals as they	
Scaffold proteins containing PDZ domains organize cell-cell signaling complexes such as the		are transmitted	294
postsynaptic density	264	Negative feedback allows fine-tuning of output	294
Proteins with multiple phosphotyrosine motifs function as dynamically regulated scaffolds	265	Adaptation allows cells to control output duration Feedback can cause output levels to oscillate	296
RECOMBINING INTERACTION AND CATALYTIC		between two stable states	299
DOMAINS TO BUILD COMPLEX ALLOSTERIC		Bistable responses also underlie more permanent	
SWITCH PROTEINS	266	outputs	301
Many signaling enzymes are allosteric switches	266	Summary	303
14-3-3 Protein regulates the Raf kinase by		Questions	303
coordinately binding two phosphorylation sites	267	References	303

Chapter 12 How Cells Make Decisions	305	Chapter 13 Methods for Studying Signaling Proteins	
VERTEBRATE VISION	307	and Networks	345
Organ: vertebrate eye	308	BIOCHEMICAL AND BIOPHYSICAL ANALYSIS	
Cell: photoreceptor cell	308	OF PROTEINS	345
Molecular Network: visual transduction cascade	309	Analytical methods can determine quantitative	202
How does the photoreceptor cell detect light and convert it to a biochemical signal?	310	binding parameters Michaelis-Menten analysis provides a way to	345
How is the photoreceptor cell able to detect low		measure the catalytic power of enzymes Methods to determine and analyze protein	347
light, even a single photon?	311 312	conformation are central to the study	
How can the response be so rapid?	312	of signaling	349
How does the photoreceptor cell reset itself to enable detection of further changes in light?	312	X-ray crystallography provides high-resolution protein structures	352
Summary	314	Nuclear magnetic resonance (NMR) can reveal	
References	314	the dynamic structure of small proteins	353
PDGF SIGNALING	315	Electron microscopy can map the shape of very	
Tissue: process of wound healing	316	large protein complexes	353
Cell: fibroblast response to wounding & platelet activation	316	Specialized spectroscopic methods can be used to study protein dynamics	354
Molecular Network: control of fibroblast proliferation	317	MAPPING PROTEIN INTERACTIONS	
How do fibroblasts detect the local occurrence		AND LOCALIZATION	355
of a wound?	318	Interacting proteins can be identified by	
How are PDGF signals propagated within the cell		isolating protein complexes from cell extracts	355
to generate outputs such as cell proliferation? How is misactivation of the proliferation	319	Binding partners can be identified by screening large libraries of genes	356
response prevented?	320	Direct protein-protein interactions can be detected	
How is the proliferative response terminated?	321	by solid-phase screening	357
Summary	322	Fluorescent protein tags are used to locate and	
References		track proteins in living cells	357
	322	Protein-protein interactions can be visualized	
THE CELL CYCLE	323	directly in living cells	359
Cell: distinct phases of the cell cycle	324	METHODS TO PERTURB CELL SIGNALING	
Molecular Network: cyclin-dependent kinase (Cdk) is a central switch whose activity is modulated		NETWORKS AND MONITOR CELLULAR RESPONSES	360
by the different cyclins	325	Genetic and pharmacological methods can be used	
How are sharp and committed transitions between cell cycle phases achieved?	326	to perturb networks Chemical dimerizers and optogenetic proteins provide a	361
How does the cell cycle ensure that each transition		dynamic way to artificially activate pathways	362
proceeds only under appropriate conditions?	329	cDNA microarrays and high-throughput	
Summary	331	sequencing are used to monitor the transcriptional	
References	331	state of a cell	363
T CELL SIGNALING	333	Modification-specific antibodies provide a method	
Organism: launching the adaptive immune response	334	to track post-translational changes	364
Cell: engagement of T cell and antigen presenting cell	335	Mass spectrometry is the workhorse for identification	0.07
Molecular Network: T cell receptor (TCR) signaling network	336	of proteins and their modifications Live-cell time-lapse microscopy provides a way to	366
How does the T cell receptor transmit signals after peptide/MHC recognition?	338	track the dynamics of single-cell responses Biosensors allow signaling activity to be monitored	368
How does the T cell prevent misactivation?		in living cells	369
How does the T cell launch a robust response	339	Flow cytometry provides a method to analyze rapidly	rie just
when stimulated by as few as ten antigenic peptide complexes?	340	single-cell responses Questions	375
How might the T cell discriminate between	540	References	373
antigenic and non-antigenic peptides?	342	Glossary	375
Summary	344	A STATE OF THE PERSON OF THE P	
References	2//	Index	385