Obsah

OBSAH	2
LIST OF FIGURES	5
LIST OF TABLES	7
ABSTRACT	8
INTRODUCTION	9
1. COMPLEX DESIGN OF THE RENOVATION AND MODERNIZATION OF PUBLIC	
BUILDINGS - DEMAND SIDE MANAGEMENT	10
1.1 INSULATION OF WALLS	10
1.2 Insulation of Roofs	11
1.3 RESTORATION OF WINDOWS	12
1.4 AIR PERMEABILITY	12
1.5 VENTILATION AFTER RECONSTRUCTION	13
1.6 USE OF DAYLIGHT	14
1.7 ELECTRICAL ENERGY – EFFICIENT LIGHTING	15
1.7.1 DETAILS OF THE LIGHTING SYSTEM SOŠD – CURRENT STATUS	15
1.7.2 INNOVATION PROPOSAL AND SOLUTIONS TO IMPROVE ENERGY EFFICIENCY	15
1.7.3 LIGHT ENERGY EFFICIENCY	16
1.7.4 CASE SOLUTIONS FOR ROOM EXAMPLES	16
1.7.5 EVALUATION	18
1.8 INTELLIGENT CONTROL SYSTEM	19
1.9 CONSUMER BEHAVIOUR AND OCCUPANCY FACTORS	22
1.9.1 SUSTAINABLE DESIGN COMPONENTS FOR A SCHOOL BUILDING	22
2. THE SUPPLY OF ENERGY - ENERGY SUPPLY SIDE MANAGEMENT	25
2.1 HEATING SYSTEMS BASED ON NATURAL GAS	25
2.1.1 GAS BOILERS	25
2.1.2 ENERGY EFFICIENCY IN HEATING SYSTEMS IN INDUSTRY AND PRODUCTION	26
2.2 GAS CONDENSING BOILERS	27
2.3 HEATING SYSTEMS BASED ON BIOMASS	28
2.3.1 BIOMASS BOILERS (PELLETS, CHIPS)	28
2.3.2 BIOMASS BOILER (WOOD PELLETS, WOOD CHIPS)	29
2.4 SOLAR ENERGY	30
2.4.1 SOLAR PANELS ON PUBLIC BUILDINGS	31
2.4.2 PHOTOVOLTAIC ON PUBLIC BUILDINGS	33
2.4.3 BUILDING INTEGRATED PHOTOVOLTAIC	34
2.5 LOW POTENTIAL GEOTHERMAL ENERGY	34
2.5.1 THE PRINCIPLE OF AIR SOURCE HEAT PUMP	35
2.5.2 HEAT PUMP AIR-AIR	36
2.5.3. HEAT PLIMP AIR-WATER	27

2.5.4 GROUND SOURCE HEAT PUMPS	37
2.5.5 HEAT PUMP WATER- WATER	40
2.5.6 HEAT PUMP GROUND-WATER	40
2.6 GAS HEAT PUMP	42
2.7 DETERMINATION OF THE NECESSARY HEAT FOR THE BUILDING	43
3. ADAPTATION OF OBJECTS AND MODELLING DIFFERENT OPTIONS TO	
SYNERGIES SOLUTIONS OF RES TECHNOLOGIES	45
3.1 INTEGRATED WIRING DIAGRAMS OZE AND ENERGY FLOWS OF CONSUMER SYSTEMS	
PUBLIC BUILDINGS 3.2 DEFINITION OF MARGINAL CONDITIONS AND PRINCIPLES OF DESIGN, OPERATION AN	45
USABILITY OF DIFFERENT SOURCES OF RENEWABLE ENERGY	49
3.3 CALCULATION OF SOLAR RADIATION IN THE CASE OF PUBLIC BUILDINGS SPŠD IN S	
Nová Ves	51
3.4 THE CALCULATION OF THE NEEDED ELECTRICITY TO POWER A HEATING USING HEAT	PUMP IN
PUBLIC BUILDINGS	53
3.5 THE EFFECTIVE USE OF RENEWABLE ENERGY SOURCES AND ADVANCED TECHNOLO	GY OF
ENVIRONMENT SYSTEMS IN PUBLIC BUILDINGS	55
3.6 STATUS OF THE SCHOOL BUILDINGS BEFORE THE UPGRADING CONSTRUCTION	56
3.6.1 OBJECT — SO 01 SCHOOL BUILDING	57
3.6.2 OBJECT - SO 02 SCHOOL WORKSHOPS	58
3.6.3 OBJECT – SO 03 SWIMMING POOL AND SO – 04 GYM	59
3.7 ENERGY CONSUMPTION IN SCHOOL BUILDINGS SPŠD IN SPIŠSKÁ NOVÁ VES	60
3.8 SOLAR SYSTEM FOR HOT WATER	63
3.9 THE PROPOSED SOLUTION TO THE SOLAR SYSTEM FOR A SWIMMING POOL IN SPSD	
3.10 PHOTOVOLTAIC SYSTEM	65
3.11 SOLUTION TO THE HEATING BY SYSTEM OF HEAT PUMPS FOR SPŠD	67
3.11.1 VARIANT I GROUND/WATER HEAT PUMP (MURIATIC/WATER)	68
3.11.2 HEAT PUMP AIR/WATER	73
3.11.3 COMBINATION HEAT PUMP AIR AND GROUND/WATER	74
3.12 THE DESIGN AND THE CHOICE OF APPROPRIATE HEAT PUMP	75
4 FINANCIAL ANALYSIS OF THE PROPOSED PROJECT	0.0
4. FINANCIAL ANALYSIS OF THE PROPOSED PROJECT	80
4.1 OPERATION INCOME AND EXPENSES MODELLING	80
4.2 PROJECT DEMAND ON SELF-GOVERNMENT REGION	84
4.3 CONCLUSION	84
- Consession	04
5. CONCEPT PROCEDURE FOR THE PROJECT OF COMPREHENSIVE RENO	VATION
AND MODERNIZATION OF PUBLIC BUILDINGS	85
5.1 THE PUBLIC SECTOR AS AN IMPORTANT CONTRACT ENTITY TO IMPROVE ENERGETIC	
EFFICIENCY AND USE OF RENEWABLE ENERGY	85
5.2 ANALYSIS OF IMPLEMENTATION BARRIERS OF ENERGY SAVING	85
5.2.1 TECHNICAL BARRIERS	86
5.2.2 ECONOMIC BARRIERS	86
5.2.3 INFORMATION BARRIERS	87
5.2.4 PROCESS BARRIERS	88
5.3 SELECTING DESIGNER - DESCRIPTION / PRINCIPLES	88

5.4 SELECTING DESIGNER - IMPLEMENTATION PHASE	88
5.5 ENERGY SAVINGS AND MONITORING	89
CONCLUSION	90
REFERENCES	91