CONTENTS

CHAPTER 1	RESTARTING DNA REPLICATION BY RECOMBINATION	1
CHAPTER 2	DOUBLE-STRAND BREAK REPAIR PATHWAYS	13
CHAPTER 3	RecA/Rad51 AND THE SEARCH FOR HOMOLOGY	19
CHAPTER 4	PREPARATION OF THE RecA/Rad51 FILAMENT	45
CHAPTER 5	SINGLE-STRAND ANNEALING	73
CHAPTER 6	GENE CONVERSION	89
CHAPTER 7	"IN VIVO BIOCHEMISTRY": RECOMBINATION IN YEAST	127
CHAPTER 8	BREAK-INDUCED REPLICATION	161
CHAPTER 9	SISTER CHROMATID REPAIR	195
CHAPTER 10	GENE TARGETING	215
CHAPTER 11	SITE-SPECIFIC RECOMBINATION	243
CHAPTER 12	CYTOLOGY AND GENETICS OF MEIOSIS	255
CHAPTER 13	MOLECULAR EVENTS DURING MEIOTIC RECOMBINATION	287
CHAPTER 14	HOLLIDAY JUNCTION RESOLVASES AND CROSSING OVER	333
CHAPTER 15	NONHOMOLOGOUS END-JOINING	353
CHAPTER 16	DNA DAMAGE CHECKPOINTS AND GENOME INSTABILITY	367
APPENDIX	EVOLUTION OF MODELS OF HOMOLOGOUS RECOMBINATION (AVAILABLE ONLINE)	
INDEX		383

ON SECTLEMENT -

DETAILED CONTENTS

	HAPTER 1 RESTARTING DNA EPLICATION BY RECOMBINATION	N	3.3	X-RAY CRYSTALLOGRAPHY HAS REVEALED A GREAT DEAL ABOUT RecA STRUCTURE AND FUNCTION	23
1.			3.4	STRAND EXCHANGE CAN BE STUDIED IN VITRO	25
1.		1	3.5	STRAND EXCHANGE TAKES PLACE INSIDE THE RECA FILAMENT	28
	SYNTHESES ARE COORDINATED AT THE REPLICATION FORK	3		A topological approach to studying strand invasion	29
1.		MICH		Single molecule analysis of recombination	30
	SEVERAL DIFFERENT WAYS	4	3.6	IN VITRO ANALYSIS SUGGESTS HOMOLOGY SEARCHING PROCEEDS BY A TETHERED THREE-	
1.		,		DIMENSIONAL SEARCH	33
,	JUNCTION 5 A HOLLIDAY JUNCTION CAN BE RESOLVED BY	6	3.7	THE REQUIREMENTS OF HOMOLOGY	
1.	ENZYMATIC CLEAVAGE	9		SEARCHING AND STRAND INVASION CAN BE ASSAYED <i>IN VIVO</i>	34
1.			3.8	BROKEN DNA ENDS BECOME MORE MOBILE	37
-	RESTART BY BREAK-INDUCED REPLICATION	10	3.9	Rad51's PROPERTIES CAN BE ALTERED BY	
0.00	UMMARY SACRET SEADING	12	7017	ASSOCIATED PROTEINS	41
51	UGGESTED READING	12	3.10	STRAND INVASION CAN APPARENTLY OCCUR WITHOUT Rad51	41
			SUM	MARY	43
	HAPTER 2 DOUBLE-STRAND BREAK REPAIR PATHWAYS		SUGO	GESTED READING	44
2.			cu	ADTED & DREDADATION OF	
	SINGLE-STRANDED GAPS	13		APTER 4 PREPARATION OF ERecA/Rad51 FILAMENT	
2.		13			
	UMMARY	17	4.1	DSB ENDS ARE RESECTED IN A 5'TO 3' DIRECTION	45
51	UGGESTED READING	17	4.2	RESECTION HAS BEEN WELL STUDIED IN E. COLI	45
-	HAPTER 3 RecA/Rad51		4.3	RESECTION IN BUDDING YEAST CAN BE MONITORED IN VIVO	48
	AND THE SEARCH FOR HOMOLOG	Y	4.4	SEVERAL DIFFERENT PROTEIN COMPLEXES ARE	
3.	.1 RecA AND Rad51 ARE THE KEY STRAND EXCHANGE PROTEINS	19	4.5	INVOLVED IN RESECTION IN BUDDING YEAST BLM PROTEIN IS IMPORTANT IN TWO	50
3.	.2 FILAMENT ASSEMBLY OF RecA AND Rad51 CAN BE ASSAYED IN VITRO	21	4.5	EXONUCLEASE COMPLEXES FOR RESECTION IN MAMMALIAN CELLS	54

4.6	RESECTION MUST PASS THROUGH CHROMATIN	55	5.6	SSA CAN OCCUR BETWEEN MISMATCHED SEQUENCES	81
4.7	PREPARING SSDNA FOR THE LOADING OF RecA/Rad51 REQUIRES SSDNA BINDING		5.7	THE BEHAVIOR OF DSB ENDS CAN BE EXPLORED USING SSA	83
	PROTEINS	57	5.8	SSA CAN BE SEEN IN OTHER ORGANISMS	84
4.8	RPA AND Rad51 ASSEMBLY CAN BE ASSAYED	199	SUM	IMARY	87
	IN VIVO	58	SUG	GESTED READING	87
4.9	CREATING A RECOMBINASE FILAMENT IN BACTERIA NEEDS THE PARTICIPATION OF SEVERAL MEDIATORS	60			
4.10	MEDIATORS IN EUKARYOTES ARE		CH	APTER 6 GENE CONVERSION	
	SURPRISINGLY UNRELATED TO THOSE IN BACTERIA	61	6.1	GENE CONVERSIONS WERE INITIALLY DEFINED FROM ABERRANT SEGREGATION OF ALLELES	
4.11	Rad52 AND Rad55-Rad57 ARETHE			IN MEIOSIS	89
	PRINCIPAL MEDIATORS IN SACCHAROMYCES CEREVISIAE	61	6.2	ANALOGOUS GENE CONVERSIONS ARISE IN MITOTIC CELLS	90
	Rad51 paralogs: Rad55 and Rad57	62	6.3	MOST GENE CONVERSION ARISES FROM	
	Additional mediators: the PCSS complex	63		MISMATCH CORRECTION OF	100
	Rad59, sharing homology with Rad52, is not	64		HETERODUPLEX DNA	91
4.12	a mediator but plays an important role Rad51 FILAMENT ASSEMBLY IN FISSION YEAST	64	6.4	GENE CONVERSIONS CAN BE ACCOMPANIED BY CROSSING OVER	93
	INVOLVES EVEN MORE PROTEINS	64	6.5	GENE CONVERSION CAN BE ASSAYED IN	0.4
4.12	Rad55/Rad57 versus Swi5/Sfr1	64		HAPLOID YEAST	94
4.13	MEDIATORS OF RECOMBINASE FILAMENT ASSEMBLY HAVE BEEN IDENTIFIED IN VERTEBRATE CELLS	67	6.6	THE MOLECULAR BASIS OF GENE CONVERSION WAS DEDUCED BY RECOMBINING LINEARIZED PLASMID DNA WITH A CHROMOSOME	96
	Vertebrate Rad51 paralogs	67	6.7	A QUESTION OF SEMANTICS: CAN THERE BE	
	Rad52 and BRCA2	68	0.7	GENE CONVERSIONS IF THE DONOR AND	
4.14	HOMOLOGS OF BRCA2 ARE FOUND IN MANY			RECIPIENT CHROMOSOMES ARE IDENTICAL?	100
	EUKARYOTES, INCLUDING A YEAST	70	6.8	HETERODUPLEX CORRECTION OFTEN DEFINES	100
4.15	MANY QUESTIONS REMAIN UNANSWERED	71		GENE CONVERSION TRACT LENGTHS	100
SUM	MARY	72	6.9	WHERE DOES HETERODUPLEX DNA FORM DURING DSB REPAIR?	101
SUGO	GESTED READING	72	6.10		101
			0.10	BEEN MEASURED IN BUDDING YEAST	103
1			6.11		
	APTER 5 SINGLE-STRAND NEALING			CROSSING OVER MAY OCCUR BY ALTERNATIVE MECHANISMS	104
5.1	5'TO 3' RESECTION PROMOTES		6.12	THERE ARE ALTERNATIVE WAYS TO GENERATE	105
	SINGLE-STRAND ANNEALING	73	112	CROSSOVERS	105
5.2	SSA IN BUDDING YEAST CAN BE STUDIED		6.13	RECOMBINATION BETWEEN SEQUENCES OF LIMITED HOMOLOGY LENGTH CONSTRAINS	
	AFTER INDUCING A SITE-SPECIFIC DSB	75		MEASURING hDNA	106
5.3	SSA IS Rad51 INDEPENDENT	78	6.14	GENE CONVERSION TRACT LENGTHS ARE	
5.4	SSA DEPENDS ON Rad52's STRAND	70		VERY DIFFERENT IN MITOTIC AND MEIOTIC	100
EE	ANNEALING ACTIVITY	78		YEAST CELLS	109
5.5	THE REMOVAL OF NONHOMOLOGOUS TAILS IS REQUIRED FOR THE COMPLETION OF SSA	79	6.15	A COMPLICATION: HETEROLOGIES INTRODUCE UNCERTAINTY	110

6.16	THERE IS COMPETITION AMONG POSSIBLE GENE CONVERSION DONORS	111	7.7	A NUCLEOSOME PROTECTION ASSAY REVEALS THAT STRAND INVASION ALSO INVOLVES	124
6.17	GENE CONVERSION IS MUTAGENIC: EVIDENCE FOR REDUCED DNA POLYMERASE PROCESSIVITY	112	7.8	CHROMATIN REMODELING THE CAPTURE OF THE SECOND HOMOLOGOUS END DURING GENE	134
6.18	GENE CONVERSION FREQUENCIES ARE	NED .		CONVERSION CAN ALSO BE STUDIED	138
6.19	INFLUENCED BY CHROMOSOMAL POSITION GENE CONVERSION AND GENE CONVERSION	113	7.9	A SMALL FRACTION OF ECTOPIC GENE CONVERSION EVENTS ARE CROSSOVER	130
	TRACTS HAVE BEEN DEFINED IN OTHER MODEL ORGANISMS	113	7.10	ASSOCIATED TWO OTHER HELICASES REGULATE GENE	139
	S. pombe	113		CONVERSION OUTCOMES	140
	Drosophila	116	7.11		
6.20	HOMOLOGOUS RECOMBINATION CAN BE ANALYZED IN PLANTS	119	7 1 2	DIFFERENT FROM GAP REPAIR STUDY OF MISMATCH CORRECTION	141
6.21	GENE CONVERSIONS HAVE BEEN STUDIED IN MAMMALS	120	18	DURING STRAND INVASION RAISES QUESTIONS ABOUT HOW MAT SWITCHING OCCURS	146
6.22	CROSSING OVER ACCOMPANYING GENE CONVERSION IS RARE IN MAMMALIAN CELLS	122	7.13	ANOTHER SPECIAL FEATURE OF MAT SWITCHING IS DONOR PREFERENCE	147
	A STATE OF THE PARTY OF THE PAR	10 700	714	MATING-TYPE SWITCHING IN S. POMBE IS	
6.23	SOME DSB REPAIR EVENTS BEGIN BY HOMOLOGOUS RECOMBINATION BUT TERMINATE WITH A		7.14	SURPRISINGLY DIFFERENT FROM THAT IN S. CEREVISIAE	148
	NONHOMOLOGOUS END	123	7.15	FISSION YEAST MAT1 SWITCHING DONOR	1
SUM	MARY	125	9	PREFERENCE INVOLVES CHROMATIN REMODELING	154
SUG	GESTED READING	125	7.16	A MAT1 DSB IS NOT LETHAL IN THE ABSENCE OF THE DONORS	157
	ADTED T WIN VIVO		7.17	ARE THERE RECOMBINATION ENHANCERS	
	APTER 7 "IN VIVO DCHEMISTRY":			IN OTHER PROGRAMMED RECOMBINATION EVENTS?	159
RE	COMBINATION IN YEAST		SUM	MARY	159
7.1	BUDDING YEAST MAT SWITCHING ALLOWS US TO DESCRIBE THE MOLECULAR EVENTS		SUG	GESTED READING	160
	DURING A GENE CONVERSION EVENT	127			
7.2	MAT SWITCHING CAN BE PHYSICALLY MONITORED ON SOUTHERN BLOTS	128	-	APTER 8 BREAK-INDUCED	
7.3	THE LOADING OF Rad51 ON SSDNA CAN BE		RE	PLICATION	
	VISUALIZED BY CHROMATIN IMMUNOPRECIPITATION	128	8.1	BIR IS IMPORTANT IN THE MATURATION AND REPLICATION OF BACTERIOPHAGE	161
7.4	THE ENCOUNTER OF THE Rad51 FILAMENT		8.2	BIR IS ALSO IMPORTANT IN E. COLI	165
	WITH THE DONOR LOCUS CAN ALSO BE MONITORED BY CHROMATIN	120	8.3	BIR HAS BEEN WELL DOCUMENTED IN BUDDING YEAST	166
105	IMMUNOPRECIPITATION	130	8.4	BIR IS USUALLY Rad51 DEPENDENT	170
7.5	A PCR ASSAY CAN BE USED TO DETECT THE BEGINNING OF NEW DNA SYNTHESIS	133	8.5	Rad51-DEPENDENT BIR REQUIRES ALL THREE	
7.6	HEAVY ISOTOPE LABELING CAN BE USED TO			MAJOR DNA POLYMERASES	173
	SHOW THAT NEW DNA SYNTHESIS IS "CONSERVATIVE"	134	8.6	MANY OTHER GENES AFFECT THE EFFICIENCY OF BIR	174

8.7	REPLICATION DURING BIR IS FAR MORE MUTAGENIC THAN NORMAL REPLICATION	176	9.7	SCE CAN BE ASSAYED GENETICALLY BY STUDYING UNEQUAL SCE AND LONG-TRACT	20
8.8	HOW BIR IS FINALLY RESOLVED IS NOT YET KNOWN	177	9.8	GENE CONVERSION THE GENETIC REQUIREMENTS FOR	20:
8.9	THERE IS ALSO A Rad51-INDEPENDENT BIR PATHWAY	179		SPONTANEOUS SCR DIFFER FROM THOSE SEEN IN INTERHOMOLOG REPAIR	20
8.10	HALF-CROSSOVERS ARE AN ALTERNATIVE PATHWAY PRODUCING NONRECIPROCAL	12.10	9.9	SCE CAN BE ANALYZED GENETICALLY IN MAMMALIAN CELLS	208
	TRANSLOCATIONS	181	9.10	RADIO-RESISTANCE IN DEINOCOCCUS	
8.11	BIR IS OBSERVED IN OTHER ORGANISMS	182		RADIODURANS INVOLVES BOTH EFFICIENT	
	Telomere elongation in Kluyveromyces lactis	182		DNA REPAIR AND RESISTANCE TO OTHER OXIDATIVE DAMAGE	210
	BIR in Schizosaccharomyces pombe	183	9.11	SISTER CHROMATID REPAIR LEAVES SEVERAL	3
	Drosophila melanogaster telomere elongation	184	9.11	IMPORTANT QUESTIONS UNANSWERED	211
	BIR in Xenopus laevis extracts	184	SUM	MARY	213
8.12	BIR-LIKE EVENTS ARE IMPORTANT FOR HUMANS	185	7-1100000	GESTED READING	213
8.13	THERE IS A Rad52-INDEPENDENT HOMOLOGOUS RECOMBINATION PATHWAY	186			
011	BIR CAN PRODUCE COPY NUMBER VARIATION	189	CH	APTER 10 GENETARGETING	
0.14	Segmental duplications arise in budding yeast	189		BACTERIAL TRANSFORMATION PROVIDED	
	Nonrecurrent SDs in human disease may	109	10.1	THE FIRST EVIDENCE OF GENE TARGETING	215
015	involve BIR	191	10.2	GENE CORRECTION AND MODIFICATION IN A EUKARYOTE WAS FIRST ACCOMPLISHED IN	
0.15	CNV MAY ARISE FROM MICROHOMOLOGY- MEDIATED BIR	192		BUDDING YEAST	215
8.16	CHROMOTHRIPSIS IS AN UNEXPECTED TYPE OF GENOME INSTABILITY THAT MAY		10.3	DOUBLE-STRAND BREAKS GREATLY IMPROVE GENE TARGETING	217
	REQUIRE BIR	193	10.4	GENE TARGETING IS MORE DIFFICULT IN	
SUM	MARY	194		MAMMALS THAN IN YEAST	222
SUGO	GESTED READING	194	10.5	GENE TARGETING IS IMPROVED BY CREATING A CHROMOSOMAL DSB AT THE TARGET LOCUS	223
CH	APTER 9 SISTER			Modifications of an existing site-specific endonuclease	225
CH	ROMATID REPAIR			Zinc-finger nucleases	225
9.1	HOMOLOGOUS RECOMBINATION IS REQUIRED			TALE nucleases (TALENs)	225
	AFTER IONIZING RADIATION	195		CRISPR nucleases	227
9.2	SISTER CHROMATID REPAIR IS PREFERRED OVER RECOMBINATION WITH A HOMOLOG	196	10.6	DESIGNER MEGANUCLEASES MAKE IT POSSIBLE TO THINK ABOUT GENETIC SURGERY	228
9.3	SCR CAN BE VISUALIZED ON CHROMOSOME- SEPARATING GELS	197	10.7	CONDITIONAL GENE KNOCKOUTS MAKE IT POSSIBLE TO ANALYZE ESSENTIAL GENES	229
9.4	SOME SISTER CHROMATID REPAIR IS SEEN AS SISTER CHROMATID EXCHANGE	200	10.8	ENDS-OUT TRANSFORMATION LIKELY HAPPENS THROUGH SEVERAL DIFFERENT	
9.5	Brdu Labeling in Mammalian Cells	1181		PATHWAYS	230
ape	REVEALS "HARLEQUIN" CHROMOSOMES	202		Hit-and-run transformation	231
9.6	SCE CAN ALSO BEEN SEEN BY USING THE			Assimilation of a single strand of transforming DNA	232
	CO-FISH TECHNIQUE	204		Independent strand invasions	233

10.9	ENDS-IN TARGETING IS MUCH MORE EFFICIENT THAN ENDS-OUT TARGETING	234	12.7	BRANCH MIGRATION CAN LEAD TO AB4:4 SEGREGATION	267
10.10	GENE KNOCKOUTS AND GENE MODIFICATION ARE EFFICIENT IN		12.8	GENE CONVERSION AND CROSSING OVER HAVE A STRONG CORRELATION	268
10.11	MODIFIED BACTERIA GENE TARGETING STRATEGIES CAN BE	236	12.9	MAJOR EVENTS IN MEIOSIS CAN BE OBSERVED CYTOLOGICALLY	269
10.11	ADAPTED TO OTHER ORGANISMS	238	12.10	SC ASSEMBLY CAN PROCEED IN TWO	272
	Gene modification in <i>Drosophila</i>	239		DISTINCT WAYS	272
SUMM	Plants have lagged behind in gene modification	240 241	12.11	CHROMOSOMES EXHIBIT DYNAMIC MOVEMENTS PRIOR TO ZYGOTENE	272
	SESTED READING	241	12.12	A STRONG BIAS FAVORS INTERHOMOLOG OVER INTERSISTER RECOMBINATION	275
115	SISTERCHIOMATIDA BANDA LENGES STARBADA IMPORTANT QUESTIQUES LIMMEWELEBRADA ILA		12.13	SOME MEIOTIC MUTANTS CAN BE ANALYZED BY BYPASSING MEIOSIS I	276
	APTER 11 SITE-SPECIFIC COMBINATION			spo13 Δ rescue of recombination-defective diploid yeast cells	276
11.1	PHASE VARIATION IN SALMONELLA			spo13∆ rescue of haploid meiosis	277
	DEPENDS ON A SITE-SPECIFIC RECOMBINASE	243	12.14	RETURN-TO-GROWTH EXPERIMENTS REVEAL A PERIOD OF COMMITMENT TO MEIOTIC LEVELS OF RECOMBINATION	278
11.2	Cre RECOMBINASE RECOMBINES AT A PAIR OF <i>lox</i> SITES	245	12.15	INTERFERENCE REGULATES THE DISTRIBUTION OF CROSSOVERS	279
11.3	Cre-MEDIATED RECOMBINATION CAN BE USED TO CREATE GENOME MODIFICATIONS	246	12.16	HOMEOSTASIS ASSURES THAT SMALL CHROMOSOMES USUALLY GET AT	2/9
11.4	FLP RECOMBINASE EXCHANGES BETWEEN FRT SITES	249		LEAST ONE CROSSOVER DURING MEIOSIS	281
11.5	ΦC31 INTEGRATION CAN TRANSFER LARGE		12.17	THERE ARE SEVERAL MODELS OF INTERFERENCE	283
	CHROMOSOMAL SEGMENTS	250	SUMM	MARY	285
SUM	MARY	254	SUGG	ESTED READING	285
SUGO	GESTED READING	254	\$8ka	STED READING YEAR	
	APTER 12 CYTOLOGY D GENETICS OF MEIOSIS			APTER 13 MOLECULAR EVE	
12.1	RECOMBINATION IS REQUIRED TO		13.1	SPO11 CREATES DSBs TO INITIATE MEIOTIC RECOMBINATION	287
	GENERATE DIVERSITY BUT ALSO TO ENSURE CHROMOSOME SEGREGATION	255	13.2	DSB FORMATION IS ASSOCIATED WITH REPLICATION AND CHROMATIN	
12.2	EARLY MEIOSIS IN DROSOPHILA STUDIES			MODIFICATIONS	288
	SHOWED THAT RECOMBINATION OCCURS AFTER CHROMOSOME REPLICATION	257	13.3	MEIOTIC HOT SPOTS CAN BE IDENTIFIED IN MANY DIFFERENT ORGANISMS	290
12.3	IN FUNGI, ALL FOUR PRODUCTS OF A SINGLE MEIOSIS CAN BE RECOVERED	258		Fission yeast	295
12.4		230		Mammals	295
12.4	GENE CONVERSIONS ARISE FREQUENTLY IN MEIOSIS	261	13.4	MEIOTIC HOT SPOTS IN MAMMALS CORRELATE STRONGLY WITH PRDM9	2.4
12.5	POST-MEIOTIC SEGREGATION IS SEEN IN THE ABSENCE OF MISMATCH REPAIR	263	13.5	HISTONE METHYLTRANSFERASE HOMOLOGOUS CHROMOSOME PAIRING	296
12.6	MEIOTIC SEGREGATION PATTERNS REVEAL HOW RECOMBINATION IS INITIATED	265		OFTEN REQUIRES Spo11-INDUCED RECOMBINATION	299

13.6	RECOMBINATION CANNOT BEGIN UNTIL Spo11 IS RELEASED FROM THE		13.19	GLOBAL ANALYSIS OF MEIOTIC EVENTS HAS BEEN EXTENDED TO METAZOANS AND PLANT	rs 327
	DSB ENDS	299		Drosophila	327
13.7	IN MEIOSIS, IN MANY ORGANISMS, Rad51			Arabidopsis	327
	IS NOT THE ONLY RECA-LIKE STRAND EXCHANGE PROTEIN	300		Mouse	327
		300		Humans	328
13.8	Dmc1 WORKS WITH SEVERAL MEIOSIS-SPECIFIC AUXILIARY FACTORS	301	13.20	MEIOTIC RECOMBINATION CAN BE INDUCED BY MEGANUCLEASE-INDUCED DSBs	328
13.9	Rad51 PLAYS ONLY A SUPPORTING ROLE			HO endonuclease	328
	IN YEAST MEIOSIS	302		VDE	330
13.10	MOLECULAR INTERMEDIATES OF			I-Scel cleavage in <i>5. pombe</i> meiosis	330
	MEIOTIC RECOMBINATION ARE WELL-STUDIED IN BUDDING YEAST	304		Mos1 transposon	330
		306		Gamma irradiation	331
	Crossover products	300	SUM	MARY	331
	DNA end resection in meiosis is less extensive than in mitotic cells	307		SESTED READING	331
	Binding of Dmc1 and Rad51 to DSB ends	307	3000	DESTED READING	231
13 11	TRANSIENT STRAND INVASION	307			
13.11	INTERMEDIATES CAN BE IDENTIFIED BY		CH	APTER 14 HOLLIDAY JUNCT	ION
	2-D GEL ELECTROPHORESIS	308			
	Single-end invasion	308	KE:	SOLVASES AND CROSSING O	VEK
	dHJ formation	309	14.1		
	Initiation of new DNA synthesis	311		ALTERNATIVE CONFIGURATIONS	333
	HJ formation in S. pombe	312	14.2	CANONICAL HJ RESOLVASES MAKE	2 224
13.12	TO COMPLETE GENE CONVERSION THE			SYMMETRICAL CUTS THAT CAN BE RE-LIGATED	D 334
	SECOND DSB END MUST BE CAPTURED	312	14.3	NONCANONICAL RESOLVASES MAY ACT ON NICKED HJS	338
13.13	AXIAL ELEMENT COMPONENTS ARE				330
	IMPORTANT IN THE CONTROL OF THE	245	14.4	THERE ARE AT LEAST FOUR HJ RESOLVASES IN EUKARYOTES	338
	INTERHOMOLOG BIAS	315		Mus81 complex	338
13.14	ZMM PROTEINS PLAY KEY ROLES IN			Yen1/Gen1	339
	REGULATING CROSSOVERS AND IMPLEMENTING INTERFERENCE	317		Slx1-Slx4	340
	Msh4-Msh5	317		Exo1-Mih1-Mih3	340
	MIh1/MIh3	318	145	DIFFERENT HJ RESOLVASES PLAY DIFFERENT	340
	Mer3	319	14.5	ROLES IN DIFFERENT ORGANISMS	340
		320		Budding yeast mitotic cells	341
12 15	Zip1/Zip2/Zip3/Zip4/Spo16	320		Budding yeast meiosis	343
13.15	ZMM PROTEINS ARE EQUALLY IMPORTANT IN MEIOSIS OF METAZOANS			Fission yeast	344
	AND PLANTS	321		Drosophila	345
13.16	THE CROSSOVER/NONCROSSOVER			Caenorhabditis	346
	DECISION APPEARS TO BE MADE EARLY			Mammals	346
	IN DSB REPAIR	321	14.6	BRANCH MIGRATION ENZYMES CAN	340
13.17	AT LEAST ONE MORE CROSSOVER SYSTEM		14.0	INFLUENCE HJ CLEAVAGE	347
	EXISTS, IN ADDITION TO THAT CONTROLLED	11	14.7	MISMATCH REPAIR ALSO INFLUENCES	
	BY ZMM PROTEINS	322	170	CROSSOVER REGULATION	348
13.18	DISTRIBUTION OF CROSSOVERS AND		SUMM	MARY	350
	NONCROSSOVERS CAN BE ANALYZED GENOMEWIDE IN BUDDING YEAST	324		ESTED READING	351
	GENORIE WIDE IN DODDING LEAST	224	2000	LOT LEG THE IN THE	22

P. AND LLD	APTER 15 NONHOMOLOGOU D-JOINING	IS	16.4	ATM AND ATR INITIATE A PROTEIN KINASE CASCADE	372
15.1	"CLASSICAL" NHEJ IS ESSENTIAL FOR THE MAMMALIAN IMMUNE SYSTEM	353	16.5	DSB-INDUCED CELL CYCLE ARREST IN MAMMALS OCCURS BEFORE S PHASE AND MITOSIS	373
15.2	VDJ JOININGS OFTEN EXHIBIT ADDITIONAL MODIFICATIONS AT THE JUNCTION	356	16.6	DSB-INDUCED CELL CYCLE ARREST IN BUDDING YEAST OCCURS PRIMARILY	
15.3	NHEJ CONTRIBUTES TO DSB REPAIR IN YEAST	357		BEFORE ANAPHASE	374
15.4	NHEJ FACILITATES CAPTURE OF DNA FRAGMENTS AT DSBs	360	16.7	γ-H2AX IS IMPORTANT FOR SISTER CHROMATID REPAIR IN MAMMALS	375
15.5	END-JOINING MAY ALSO OCCUR BY ALTERNATIVE NHEJ	361	16.8	THE DNA DAMAGE CHECKPOINT MODULATES DSB REPAIR IN MANY WAYS	376
15.6	THE 53BP1 PROTEIN PLAYS MULTIPLE ROLES IN END-JOINING	363	16.9	FAILURES OF THE DNA DAMAGE RESPONS CONTRIBUTE TO GENOME INSTABILITY	E 377
15.7	GENE AMPLIFICATION CAN OCCUR VIA NHEJ AND BFB CYCLES	364 365	16.10	CANCER CHEMOTHERAPIES EXPLOIT TARGETS IN MULTIPLE DNA REPAIR PATHWAYS	379
	MARY SESTED READING	366	16.11	HOMOLOGOUS RECOMBINATION TURNS UP IN STEM CELL REPROGRAMMING	380
			SUM	MARY	380
CH	APTER 16 DNA DAMAGE ECKPOINTS AND GENOME STABILITY			ESTED READING	38
	SECRETARIA DE LA CONTRETA DEL CONTRETA DE LA CONTRETA DEL CONTRETA DE LA CONTRETA			PENDIX: EVOLUTION OF	
16.1	THE DNA DAMAGE CHECKPOINT PROVIDES A CELL CYCLE DELAY TO ALLOW DNA REPAIR	367	- Allendar	DELS OF HOMOLOGOUS OMBINATION (AVAILABLE	ONLINE
16.2	PI3 KINASE-LIKE KINASES ARE AT THE APEX OF DNA DAMAGE SIGNALING	368	SUM	(AVAILABLE	ONLINE
16.3	DIFFERENT MECHANISMS ACTIVATE ATM AND ATR IN RESPONSE TO A DSB	369	IND		383