CONTENT

Unod a picklenacción	
INTRODUCTION AND PROBLEMATIC	7
SOIL NITROGEN AND ITS TRANSFORMATIONS	8
Nitrification processes Aibilibacm noceny	9
Nitrate accumulation, leaching and pollution of ground water	12
Nitrate removal in sea	14
UPTAKE TRANSPORT AND ASSIMILATION OF NITRATE	15
Nitrate untake connected with phloem transport of malate	17
Regulation of NO ₃ uptake by phloem-translocated amino acids	18
Some other metabolic regulations	19
Nitrate assimilation pathway Cestar asimilace dunker	20
Regulation of nitrate reductase Regulace miliatore reduktary	21
Regulation of nitrate reductase by nitrate	21
Light regulation of nitrate reductase	22
Transgenic regulation of nitrate reductase	23
Nitrate regulates carbon assimilation	24
UPTAKE AND ASSIMILATION OF AMMONIUM	25
Ammonium assimilation pathway Certa animilace anoneale	26
Concentration of ammonium in plant tissues	26
Sensitivity of plants to NH4 ⁺	27
Acidification connected with NH ₄ ⁺ assimilation	29
Ammonium metabolization is connected with carbohydrate	
supplementation	31
Ammonium metabolization and dark CO ₂ fixation	32
Ammonium participation on the regulation of carbon flow	33
Object of experiments Ridmit experimenter	35
MATERIAL AND METHODS palerial a melody	36
Nørledly a diskuse	10
RESULTS AND DISCUSSION	43
Uptake relations between N-ions and water	43
Uptake rate of N-lons at different N levels	44
Changes of pH values of putriant solutions during NO i and NUL ⁺	21
untake	50
uptake	33

Changes of cation contents in experimental plants	56
Growth changes of experimental plants	58
Changes in respiration processes	61
Changes in TNS content	62
Nitrogen utilization by experimental plants	63
Differences in N use efficiency by experimental plants	66
Effect of nitrate and ammonium on photosynthetic processes	72
<i>Effect of</i> NO_3^- and NH_4^+ on photosynthetic dry matter increment	72
<i>Effect of</i> NO_3^- and NH_4^+ on radiation use efficiency for biomass	
production in maize and sunflower	76
Effect of NO ₃ and NH ₄ ⁺ on photosynthetic apparatus in pea	
and maize	79
Effect on photoinhibition	79
Effect on leaf pigments content	85
Effect on PEPC activity	88
Possible causes of ammonium toxicity in pea plants	90
Some conclusions important for further study and practical use	94
SUMMARY	96
REFERENCES	101

the sub-the second s