

Contents

Receptors and Signaling	105
Cytokines and Chemokines	105
General Properties of Cytokines and Chemokines	106
Cytokines mediate the activation, proliferation, and differentiation of target cells	107
Cytokines have numerous biological functions	107
Cytokines regulate the development of specific T-cell subpopulations	107
Chapter 1	1
Overview of the Immune System	1
A Historical Perspective of Immunology	2
Early vaccination studies led the way to immunology	2
Vaccination is an ongoing, worldwide enterprise	3
Immunology is about more than just vaccines and infectious disease	4
Immunity involves both humoral and cellular components	5
How are foreign substances recognized by the immune system?	6
Important Concepts for Understanding the Mammalian Immune Response	11
Pathogens come in many forms and must first breach natural barriers	12
The immune response quickly becomes tailored to suit the assault	12
Pathogen recognition molecules can be encoded in the germline or randomly generated	14
Tolerance ensures that the immune system avoids destroying the host	15
The immune response is composed of two interconnected arms: innate immunity and adaptive immunity	16
Adaptive immune responses typically generate memory	17
The Good, Bad, and Ugly of the Immune System	19
Inappropriate or dysfunctional immune responses can result in a range of disorders	19
The immune response renders tissue transplantation challenging	22
Cancer presents a unique challenge to the immune response	22

Spanish influenza	137
Cytokine-Based Therapies	137
SUMMARY	138
REFERENCES	138
USEFUL WEB SITES	139
STUDY QUESTIONS	139
SUMMARY	140
REFERENCES	140
USEFUL WEB SITES	141
Chapter 2	23
Cells, Organs, and Micro-environments of the Immune System	23
Cells of the Immune System	27
Hematopoietic stem cells have the ability to differentiate into many types of blood cells	28
Hematopoiesis is the process by which hematopoietic stem cells develop into mature blood cells	32
Cells of the myeloid lineage are the first responders to infection	32
Cells of the lymphoid lineage regulate the adaptive immune response	37
Primary Lymphoid Organs—Where Immune Cells Develop	41
The bone marrow provides niches for hematopoietic stem cells to self-renew and differentiate into myeloid cells and B lymphocytes	41
The thymus is a primary lymphoid organ where T cells mature	41
Secondary Lymphoid Organs—Where the Immune Response Is Initiated	48
Secondary lymphoid organs are distributed throughout the body and share some anatomical features	48
Lymphoid organs are connected to each other and to infected tissue by two different circulatory systems: blood and lymphatics	48
The lymph node is a highly specialized secondary lymphoid organ	50

The spleen organizes the immune response against blood-borne pathogens	53	Signal-induced PIP ₂ breakdown by PLC causes an increase in cytoplasmic calcium ion concentration	75
MALT organizes the response to antigen that enters mucosal tissues	53	Ubiquitination may inhibit or enhance signal transduction	76
The skin is an innate immune barrier and also includes lymphoid tissue	56	Frequently Encountered Signaling Pathways	77
Tertiary lymphoid tissues also organize and maintain an immune response	57	The PLC pathway induces calcium release and PKC activation	77
SUMMARY	60	The Ras/Map kinase cascade activates transcription through AP-1	78
REFERENCES	60	PKC activates the NF-κB transcription factor	79
USEFUL WEB SITES	61	The Structure of Antibodies	80
STUDY QUESTIONS	61	Antibodies are made up of multiple immunoglobulin domains	80
Chapter 3		Antibodies share a common structure of two light chains and two heavy chains	81
Receptors and Signaling: B and T-Cell Receptors	65	There are two major classes of antibody light chains	85
Receptor-Ligand Interactions	66	There are five major classes of antibody heavy chains	85
Receptor-ligand binding occurs via multiple noncovalent bonds	66	Antibodies and antibody fragments can serve as antigens	86
How do we quantitate the strength of receptor-ligand interactions?	66	Each of the domains of the antibody heavy and light chains mediate specific functions	88
Interactions between receptors and ligands can be multivalent	67	X-ray crystallography has been used to define the structural basis of antigen-antibody binding	90
Receptor and ligand expression can vary during the course of an immune response	68	Signal Transduction in B Cells	91
Local concentrations of cytokines and other ligands may be extremely high	68	Antigen binding results in docking of adapter molecules and enzymes into the BCR-Igα/Igβ membrane complex	91
Common Strategies Used in Many Signaling Pathways	69	B cells use many of the downstream signaling pathways described above	92
Ligand binding can induce conformational changes in, and/or clustering of, the receptor	71	B cells also receive signals through co-receptors	94
Some receptors require receptor-associated molecules to signal cell activation	71	T-Cell Receptors and Signaling	95
Ligand-induced receptor clustering can alter receptor location	71	The T-cell receptor is a heterodimer with variable and constant regions	95
Tyrosine phosphorylation is an early step in many signaling pathways	73	The T-cell signal transduction complex includes CD3	98
Adapter proteins gather members of signaling pathways	74	The T cell co-receptors CD4 and CD8 also bind the MHC	99
Phosphorylation on serine and threonine residues is also a common step in signaling pathways	74	Lck is the first tyrosine kinase activated in T cell signaling	100
Phosphorylation of membrane phospholipids recruits PH domain-containing proteins to the cell membrane	75	T cells use downstream signaling strategies similar to those of B cells	100
SUMMARY	101	REFERENCES	102
USEFUL WEB SITES	102	STUDY QUESTIONS	103

Chapter 4

Receptors and Signaling: Cytokines and Chemokines **105**

General Properties of Cytokines and Chemokines **106**

Cytokines mediate the activation, proliferation, and differentiation of target cells	107
Cytokines have numerous biological functions	107
Cytokines can elicit and support the activation of specific T-cell subpopulations	107
Cell activation may alter the expression of receptors and adhesion molecules	109
Cytokines are concentrated between secreting and target cells	110
Signaling through multiple receptors can fine tune a cellular response	110

Six Families of Cytokines and Associated Receptor Molecules **111**

Cytokines of the IL-1 family promote proinflammatory signals	113
Hematopoietin (Class I) family cytokines share three-dimensional structural motifs, but induce a diversity of functions in target cells	116
The Interferon (Class II) cytokine family was the first to be discovered	119
Members of the TNF cytokine family can signal development, activation, or death	123
The IL-17 family is a recently discovered, proinflammatory cytokine cluster	127
Chemokines direct the migration of leukocytes through the body	129

Cytokine Antagonists **133**

The IL-1 receptor antagonist blocks the IL-1 cytokine receptor	133
Cytokine antagonists can be derived from cleavage of the cytokine receptor	134
Some viruses have developed strategies to exploit cytokine activity	134

Cytokine-Related Diseases **134**

Septic shock is relatively common and potentially lethal	135
Bacterial toxic shock is caused by superantigen induction of T-cell cytokine secretion	135
Cytokine activity is implicated in lymphoid and myeloid cancers	137

Cytokine storms may have caused many deaths in the 1918 Spanish influenza	137
---	-----

Cytokine-Based Therapies **137**

SUMMARY	138
REFERENCES	138
USEFUL WEB SITES	139
STUDY QUESTIONS	140

Chapter 5

Innate Immunity **141**

Anatomical Barriers to Infection **143**

Epithelial barriers prevent pathogen entry into the body's interior	143
---	-----

Antimicrobial proteins and peptides kill would-be invaders	145
--	-----

Phagocytosis **147**

Microbes are recognized by receptors on phagocytic cells	147
Phagocytosed microbes are killed by multiple mechanisms	151
Phagocytosis contributes to cell turnover and the clearance of dead cells	152

Induced Cellular Innate Responses **152**

Cellular pattern recognition receptors activate responses to microbes and cell damage	153
Toll-like receptors recognize many types of pathogen molecules	153
C-type lectin receptors bind carbohydrates on the surfaces of extracellular pathogens	158
Retinoic acid-inducible gene-I-like receptors bind viral RNA in the cytosol of infected cells	160
Nod-like receptors are activated by a variety of PAMPs, DAMPs, and other harmful substances	160
Expression of innate immunity proteins is induced by PRR signaling	160

Inflammatory Responses **166**

Inflammation results from innate responses triggered by infection, tissue damage, or harmful substances	167
---	-----

Proteins of the acute phase response contribute to innate immunity and inflammation	168
---	-----

Natural Killer Cells **168**

Regulation and Evasion of Innate and Inflammatory Responses **169**

Innate and inflammatory responses can be harmful	169	The Regulation of Complement Activity	210
Innate and inflammatory responses are regulated both positively and negatively	172	Complement activity is passively regulated by protein stability and cell surface composition	210
Pathogens have evolved mechanisms to evade innate and inflammatory responses	173	The C1 inhibitor, C1INH, promotes dissociation of C1 components	211
Interactions Between the Innate and Adaptive Immune Systems	173	Decay Accelerating Factors promote decay of C3 convertases	211
The innate immune system activates and regulates adaptive immune responses	174	Factor I degrades C3b and C4b	212
Adjuvants activate innate immune responses to increase the effectiveness of immunizations	175	Protectin inhibits the MAC attack	213
Some pathogen clearance mechanisms are common to both innate and adaptive immune responses	176	Carboxypeptidases can inactivate the anaphylatoxins, C3a and C5a	213
Ubiquity of Innate Immunity	176	Complement Deficiencies	213
Plants rely on innate immune responses to combat infections	177	Microbial Complement Evasion Strategies	214
Invertebrate and vertebrate innate immune responses show both similarities and differences	177	Some pathogens interfere with the first step of immunoglobulin-mediated complement activation	215
SUMMARY	180	Microbial proteins bind and inactivate complement proteins	215
REFERENCES	181	Microbial proteases destroy complement proteins	215
USEFUL WEB SITES	182	Some microbes mimic or bind complement regulatory proteins	215
STUDY QUESTIONS	182	The Evolutionary Origins of the Complement System	215
		SUMMARY	219
		REFERENCES	220
		USEFUL WEB SITES	220
		STUDY QUESTIONS	221
Chapter 6		Chapter 7	
The Complement System	187	The Organization and Expression of Lymphocyte Receptor Genes	225
The Major Pathways of Complement Activation	189	The Puzzle of Immunoglobulin Gene Structure	226
The classical pathway is initiated by antibody binding	190	Investigators proposed two early theoretical models of antibody genetics	226
The lectin pathway is initiated when soluble proteins recognize microbial antigens	195	Breakthrough experiments revealed that multiple gene segments encode the light chain	227
The alternative pathway is initiated in three distinct ways	196		
The three complement pathways converge at the formation of the C5 convertase	200		
C5 initiates the generation of the MAC	200		
The Diverse Functions of Complement	201	Multigene Organization of Ig Genes	231
Complement receptors connect complement-tagged pathogens to effector cells	201	Kappa light-chain genes include V, J, and C segments	231
Complement enhances host defense against infection	204	Lambda light-chain genes pair each J segment with a particular C segment	231
Complement mediates the interface between innate and adaptive immunities	207	Heavy-chain gene organization includes V _H , D _H , J _H , and C _H segments	232
Complement aids in the contraction phase of the immune response	207		
Complement mediates CNS synapse elimination	210		

The Mechanism of V(D)J Recombination	232	Class II molecules have two non-identical glycoprotein chains	262
Recombination is directed by signal sequences	233	Class I and II molecules exhibit polymorphism in the region that binds to peptides	263
Gene segments are joined by the RAG1/2 recombinase combination	234		
V(D)J recombination results in a functional Ig variable region gene	235		
V(D)J recombination can occur between segments transcribed in either the same or opposite directions	239		
Five mechanisms generate antibody diversity in naïve B cells	239		
B-Cell Receptor Expression	242		
Allelic exclusion ensures that each B cell synthesizes only one heavy chain and one light chain	242		
Receptor editing of potentially autoreactive receptors occurs in light chains	243		
Ig gene transcription is tightly regulated	244		
Mature B cells express both IgM and IgD antibodies by a process that involves mRNA splicing	246		
T-Cell Receptor Genes and Expression	247		
Understanding the protein structure of the TCR was critical to the process of discovering the genes	247		
The β-chain gene was discovered simultaneously in two different laboratories	249		
A search for the α-chain gene led to the γ-chain gene instead	250		
TCR genes undergo a process of rearrangement very similar to that of Ig genes	251		
TCR expression is controlled by allelic exclusion	253		
TCR gene expression is tightly regulated	253		
SUMMARY	255		
REFERENCES	256		
USEFUL WEB SITES	257		
STUDY QUESTIONS	258		
Chapter 8			
The Major Histocompatibility Complex and Antigen Presentation	261		
The Structure and Function of MHC Molecules	262		
Class I molecules have a glycoprotein heavy chain and a small protein light chain	262		
General Organization and Inheritance of the MHC	267		
The MHC locus encodes three major classes of molecules	268		
The exon/intron arrangement of class I and II genes reflects their domain structure	270		
Allelic forms of MHC genes are inherited in linked groups called haplotypes	270		
MHC molecules are codominantly expressed	271		
Class I and class II molecules exhibit diversity at both the individual and species levels	273		
MHC polymorphism has functional relevance	276		
The Role of the MHC and Expression Patterns	277		
MHC molecules present both intracellular and extracellular antigens	278		
MHC class I expression is found throughout the body	278		
Expression of MHC class II molecules is primarily restricted to antigen-presenting cells	279		
MHC expression can change with changing conditions	279		
T cells are restricted to recognizing peptides presented in the context of self-MHC alleles	281		
Evidence suggests different antigen processing and presentation pathways	284		
The Endogenous Pathway of Antigen Processing and Presentation	285		
Peptides are generated by protease complexes called proteasomes	285		
Peptides are transported from the cytosol to the RER	285		
Chaperones aid peptide assembly with MHC class I molecules	286		
The Exogenous Pathway of Antigen Processing and Presentation	288		
Peptides are generated from internalized molecules in endocytic vesicles	288		
The invariant chain guides transport of class II MHC molecules to endocytic vesicles	289		
Peptides assemble with class II MHC molecules by displacing CLIP	289		
Cross-Presentation of Exogenous Antigens	291		

Dendritic cells appear to be the primary cross-presenting cell type 292

Mechanisms and Functions of Cross-Presentation 292

Presentation of Nonpeptide Antigens 293

SUMMARY 295

REFERENCES 295

USEFUL WEB SITES 296

STUDY QUESTIONS 296

Chapter 9

T-Cell Development 299

Early Thymocyte Development 301

Thymocytes progress through four double-negative stages 301

Thymocytes can express either TCR $\alpha\beta$ or TCR $\gamma\delta$ receptors 302

DN thymocytes undergo β -selection, which results in proliferation and differentiation 303

Positive and Negative Selection 304

Thymocytes "learn" MHC restriction in the thymus 305

T cells undergo positive and negative selection 305

Positive selection ensures MHC restriction 307

Negative selection (central tolerance) ensures self-tolerance 310

The selection paradox: Why don't we delete all cells we positively select? 312

An alternative model can explain the thymic selection paradox 313

Do positive and negative selection occur at the same stage of development, or in sequence? 314

Lineage Commitment 314

Several models have been proposed to explain lineage commitment 314

Double-positive thymocytes may commit to other types of lymphocytes 316

Exit from the Thymus and Final Maturation 316

Other Mechanisms That Maintain Self-Tolerance 316

T_{REG} cells negatively regulate immune responses 317

Peripheral mechanisms of tolerance also protect against autoreactive thymocytes 318

Apoptosis 318

Apoptosis allows cells to die without triggering an inflammatory response 318

Different stimuli initiate apoptosis, but all activate caspases 318

Apoptosis of peripheral T cells is mediated by the extrinsic (Fas) pathway 320

TCR-mediated negative selection in the thymus induces the intrinsic (mitochondria-mediated) apoptotic pathway 321

Bcl-2 family members can inhibit or induce apoptosis 321

SUMMARY 324

REFERENCES 325

USEFUL WEB SITES 326

STUDY QUESTIONS 327

Chapter 10

B-Cell Development 329

The Site of Hematopoiesis 330

The site of B-cell generation changes during gestation 330

Hematopoiesis in the fetal liver differs from that in the adult bone marrow 332

B-Cell Development in the Bone Marrow 332

The stages of hematopoiesis are defined by cell-surface markers, transcription-factor expression, and immunoglobulin gene rearrangements 334

The earliest steps in lymphocyte differentiation culminate in the generation of a common lymphoid progenitor 337

The later steps of B-cell development result in commitment to the B-cell phenotype 339

Immature B cells in the bone marrow are exquisitely sensitive to tolerance induction 344

Many, but not all, self-reactive B cells are deleted within the bone marrow 345

B cells exported from the bone marrow are still functionally immature 345

Mature, primary B-2 B cells migrate to the lymphoid follicles 349

The Development of B-1 and Marginal-Zone B Cells 351

B-1 B cells are derived from a separate developmental lineage 351

Marginal-zone cells share phenotypic and functional characteristics with B-1 B cells and arise at the T2 stage 352

Comparison of B- and T-Cell Development 352

SUMMARY	354
REFERENCES	355
USEFUL WEB SITES	355
STUDY QUESTIONS	356

Chapter 11

T-Cell Activation, Differentiation, and Memory 357

T-Cell Activation and the Two-Signal Hypothesis 358

Costimulatory signals are required for optimal T-cell activation and proliferation	359
Clonal anergy results if a costimulatory signal is absent	363
Cytokines provide Signal 3	364
Antigen-presenting cells have characteristic costimulatory properties	365
Superantigens are a special class of T-cell activators	366

T-Cell Differentiation 368

Helper T cells can be divided into distinct subsets	370
The differentiation of T helper cell subsets is regulated by polarizing cytokines	371
Effector T helper cell subsets are distinguished by three properties	372
Helper T cells may not be irrevocably committed to a lineage	378
Helper T-cell subsets play critical roles in immune health and disease	378

T-Cell Memory 379

Naïve, effector, and memory T cells display broad differences in surface protein expression	379
T_{CM} and T_{EM} are distinguished by their locale and commitment to effector function	380
How and when do memory cells arise?	380
What signals induce memory cell commitment?	381
Do memory cells reflect the heterogeneity of effector cells generated during a primary response?	381
Are there differences between $CD4^+$ and $CD8^+$ memory T cells?	381
How are memory cells maintained over many years?	381

SUMMARY	381
REFERENCES	382
USEFUL WEB SITES	383
STUDY QUESTIONS	383

Chapter 12

B-Cell Activation, Differentiation, and Memory Generation 385

T-Dependent B-Cell Responses 388

T-dependent antigens require T-cell help to generate an antibody response	388
---	-----

Antigen recognition by mature B cells provides a survival signal	389
--	-----

B cells encounter antigen in the lymph nodes and spleen	390
---	-----

B-cell recognition of cell-bound antigen results in membrane spreading	391
--	-----

What causes the clustering of the B-cell receptors upon antigen binding?	392
--	-----

Antigen receptor clustering induces internalization and antigen presentation by the B cell	393
--	-----

Activated B cells migrate to find antigen-specific T cells	393
--	-----

Activated B cells move either into the extra-follicular space or into the follicles to form germinal centers	395
--	-----

Plasma cells form within the primary focus	395
--	-----

Other activated B cells move into the follicles and initiate a germinal center response	396
---	-----

Somatic hypermutation and affinity selection occur within the germinal center	398
---	-----

Class switch recombination occurs within the germinal center after antigen contact	401
--	-----

Most newly generated B cells are lost at the end of the primary immune response	403
---	-----

Some germinal center cells complete their maturation as plasma cells	403
--	-----

B-cell memory provides a rapid and strong response to secondary infection	404
---	-----

T-Independent B-Cell Responses 406

T-independent antigens stimulate antibody production without the need for T-cell help	406
---	-----

Two novel subclasses of B cells mediate the response to T-independent antigens	407
--	-----

Negative Regulation of B Cells 411

Negative signaling through CD22 shuts down unnecessary BCR signaling	411
--	-----

Negative signaling through the Fc γ RIIb receptor inhibits B-cell activation	411
---	-----

B-10 B cells act as negative regulators by secreting IL-10	411
--	-----

SUMMARY	412	Naïve lymphocytes sample stromal cells in the lymph nodes	461
REFERENCES	413	Naïve lymphocytes browse for antigen along reticular networks in the lymph node	461
USEFUL WEB SITES	414		
STUDY QUESTIONS	414		
Chapter 13		Immune Cell Behavior during the Innate Immune Response	464
Effector Responses: Cell-and Antibody-Mediated Immunity	415	Antigen-presenting cells travel to lymph nodes and present processed antigen to T cells	465
Antibody-Mediated Effector Functions	416	Unprocessed antigen also gains access to lymph-node B cells	465
Antibodies mediate the clearance and destruction of pathogen in a variety of ways	416		
Antibody isotypes mediate different effector functions	419		
Fc receptors mediate many effector functions of antibodies	423		
Cell-Mediated Effector Responses	427		
Cytotoxic T lymphocytes recognize and kill infected or tumor cells via T-cell receptor activation	428		
Natural killer cells recognize and kill infected cells and tumor cells by their absence of MHC class I	435		
NKT cells bridge the innate and adaptive immune systems	441		
Experimental Assessment of Cell-Mediated Cytotoxicity	444		
Co-culturing T cells with foreign cells stimulates the mixed-lymphocyte reaction	444		
CTL activity can be demonstrated by cell-mediated lympholysis	445		
The graft-versus-host reaction is an in vivo indication of cell-mediated cytotoxicity	446		
SUMMARY	446		
REFERENCES	447		
USEFUL WEB SITES	448		
STUDY QUESTIONS	448		
Chapter 14		Immune Cell Behavior in Peripheral Tissues	474
The Immune Response in Space and Time	451	Naïve CD4 ⁺ T cells arrest their movements after engaging antigens	468
Immune Cell Behavior before Antigen Is Introduced	455	B cells seek help from CD4 ⁺ T cells at the border between the follicle and paracortex of the Lymph Node	468
Naïve lymphocytes circulate between secondary and tertiary lymphoid tissues	455	Dynamic imaging approaches have been used to address a controversy about B-cell behavior in germinal centers	470
		CD8 ⁺ T cells are activated in the lymph node via a multicellular interaction	471
		Activated lymphocytes exit the lymph node and recirculate	472
		A summary of our current understanding	472
		The immune response contracts within 10 to 14 days	474
Allergy, Hypersensitivities, and Chronic Inflammation	485		
Allergy: A Type I Hypersensitivity Reaction	486		
IgE antibodies are responsible for type I hypersensitivity	487		
Many allergens can elicit a type I response	487		
IgE antibodies act by cross-linking Fc ϵ receptors on the surfaces of innate immune cells	487		

IgE receptor signaling is tightly regulated	491
Innate immune cells produce molecules responsible for type I hypersensitivity symptoms	491
Type I hypersensitivities are characterized by both early and late responses	494
There are several categories of type I hypersensitivity reactions	494
There is a genetic basis for type I hypersensitivity	497
Diagnostic tests and treatments are available for type I hypersensitivity reactions	498
The hygiene hypothesis has been advanced to explain increases in allergy incidence	501
Antibody-Mediated (Type II) Hypersensitivity Reactions	501
Transfusion reactions are an example of type II hypersensitivity	501
Hemolytic disease of the newborn is caused by type II reactions	503
Hemolytic anemia can be drug induced	504
Immune Complex-Mediated (Type III) Hypersensitivity	505
Immune complexes can damage various tissues	505
Immune complex-mediated hypersensitivity can resolve spontaneously	505
Autoantigens can be involved in immune complex-mediated reactions	506
Arthus reactions are localized type III hypersensitivity reactions	506
Delayed-Type (Type IV) Hypersensitivity (DTH)	506
The initiation of a type IV DTH response involves sensitization by antigen	507
The effector phase of a classical DTH response is induced by second exposure to a sensitizing antigen	507
The DTH reaction can be detected by a skin test	508
Contact dermatitis is a type IV hypersensitivity response	508
Chronic Inflammation	509
Infections can cause chronic inflammation	509
There are noninfectious causes of chronic inflammation	510
Obesity is associated with chronic inflammation	510
Chronic inflammation can cause systemic disease	510
SUMMARY	513
REFERENCES	515
USEFUL WEB SITES	515
STUDY QUESTIONS	516
Chapter 16	
Tolerance, Autoimmunity, and Transplantation	517
Establishment and Maintenance of Tolerance	518
Antigen sequestration is one means to protect self antigens from attack	519
Central tolerance limits development of autoreactive T cells and B cells	520
Peripheral tolerance regulates autoreactive cells in the circulation	520
Autoimmunity	525
Some autoimmune diseases target specific organs	526
Some autoimmune diseases are systemic	529
Both intrinsic and extrinsic factors can favor susceptibility to autoimmune disease	531
Several possible mechanisms have been proposed for the induction of autoimmunity	533
Autoimmune diseases can be treated by general or pathway-specific immunosuppression	534
Transplantation Immunology	536
Graft rejection occurs based on immunologic principles	536
Graft rejection follows a predictable clinical course	541
Immunosuppressive therapy can be either general or target-specific	543
Immune tolerance to allografts is favored in certain instances	545
Some organs are more amenable to clinical transplantation than others	546
SUMMARY	549
REFERENCES	550
USEFUL WEB SITES	551
STUDY QUESTIONS	551
Chapter 17	
Infectious Diseases and Vaccines	553
The Importance of Barriers to Infection and the Innate Response	554
Viral Infections	555
Many viruses are neutralized by antibodies	556
Cell-mediated immunity is important for viral control and clearance	556

Viruses employ several different strategies to evade host defense mechanisms	556	B-cell immunodeficiencies exhibit depressed production of one or more antibody isotypes	601
Influenza has been responsible for some of the worst pandemics in history	557	Disruptions to innate components may also impact adaptive responses	601
Bacterial Infections	560	Complement deficiencies are relatively common	603
Immune responses to extracellular and intracellular bacteria can differ	560	Immunodeficiency that disrupts immune regulation can manifest as autoimmunity	603
Bacteria can evade host defense mechanisms at several different stages	563	Immunodeficiency disorders are treated by replacement therapy	604
Tuberculosis is primarily controlled by CD4 ⁺ T cells	564	Animal models of immunodeficiency have been used to study basic immune function	604
Diphtheria can be controlled by immunization with inactivated toxoid	565	Secondary Immunodeficiencies	606
Parasitic Infections	565	HIV/AIDS has claimed millions of lives worldwide	607
Protozoan parasites account for huge worldwide disease burdens	565	The retrovirus HIV-1 is the causative agent of AIDS	608
A variety of diseases are caused by parasitic worms (helminths)	567	HIV-1 is spread by intimate contact with infected body fluids	610
Fungal Infections	569	In vitro studies have revealed the structure and life cycle of HIV-1	612
Innate immunity controls most fungal infections	569	Infection with HIV-1 leads to gradual impairment of immune function	615
Immunity against fungal pathogens can be acquired	571	Active research investigates the mechanism of progression to AIDS	616
Emerging and Re-emerging Infectious Diseases	571	Therapeutic agents inhibit retrovirus replication	619
Some noteworthy new infectious diseases have appeared recently	572	A vaccine may be the only way to stop the HIV/AIDS epidemic	621
Diseases may re-emerge for various reasons	573	SUMMARY	623
Vaccines	574	REFERENCES	623
Protective immunity can be achieved by active or passive immunization	574	USEFUL WEB SITES	624
There are several vaccine strategies, each with unique advantages and challenges	578	STUDY QUESTIONS	624
Conjugate or multivalent vaccines can improve immunogenicity and outcome	583		
Adjuvants are included to enhance the immune response to a vaccine	585		
SUMMARY	586		
REFERENCES	587		
USEFUL WEB SITES	588		
STUDY QUESTIONS	588		
Chapter 18		Chapter 19	
Immunodeficiency Disorders	593	Cancer and the Immune System	627
Primary Immunodeficiencies	593	Terminology and Common Types of Cancer	627
Combined immunodeficiencies disrupt adaptive immunity	597	Malignant Transformation of Cells	628
		DNA alterations can induce malignant transformation	629
		The discovery of oncogenes paved the way for our understanding of cancer induction	629
		Genes associated with cancer control cell proliferation and survival	630
		Malignant transformation involves multiple steps	633
		Tumor Antigens	634
		Tumor-specific antigens are unique to tumor cells	636
		Tumor-associated antigens are normal cellular proteins with unique expression patterns	636

The Immune Response to Cancer	638	
Immunoediting both protects against and promotes tumor growth	639	Hemagglutination inhibition reactions are used to detect the presence of viruses and of antiviral antibodies
Key immunologic pathways mediating tumor eradication have been identified	639	Bacterial agglutination can be used to detect antibodies to bacteria
Some inflammatory responses can promote cancer	642	
Some tumor cells evade immune recognition and activation	643	
Cancer Immunotherapy	644	
Monoclonal antibodies can be targeted to tumor cells	644	Radioimmunoassays are used to measure the concentrations of biologically relevant proteins and hormones in bodily fluids
Cytokines can be used to augment the immune response to tumors	646	ELISA assays use antibodies or antigens covalently bound to enzymes
Tumor-specific T cells can be expanded and reintroduced into patients	647	The design of an ELISA assay must consider various methodological options
New therapeutic vaccines may enhance the anti-tumor immune response	647	ELISPOT assays measure molecules secreted by individual cells
Manipulation of costimulatory signals can improve cancer immunity	647	Western blotting can identify a specific protein in a complex protein mixture
Combination cancer therapies are yielding surprising results	648	
SUMMARY	649	
REFERENCES	650	
USEFUL WEB SITES	650	
STUDY QUESTIONS	651	
Chapter 20		
Experimental Systems and Methods	653	
Antibody Generation	654	
Polyclonal antibodies are secreted by multiple clones of antigen-specific B cells	654	Immunocytochemistry and immunohistochemistry use enzyme-conjugated antibodies to create images of fixed tissues
A monoclonal antibody is the product of a single stimulated B cell	654	Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens
Monoclonal antibodies can be modified for use in the laboratory or the clinic	655	
Immunoprecipitation- Based Techniques	656	
Immunoprecipitation can be performed in solution	656	Fluorescence can be used to visualize cells and molecules
Immunoprecipitation of soluble antigens can be performed in gel matrices	656	Immunofluorescence microscopy uses antibodies conjugated with fluorescent dyes
Immunoprecipitation allows characterization of cell-bound molecules	657	Confocal fluorescence microscopy provides three-dimensional images of extraordinary clarity
Agglutination Reactions	658	Multiphoton fluorescence microscopy is a variation of confocal microscopy
Hemagglutination reactions can be used to detect antigen conjugated to the surface of red blood cells	658	Intravital imaging allows observation of immune responses <i>in vivo</i>
		Flow Cytometry
		Magnetic Activated Cell Sorting
		Cell Cycle Analysis

Colorimetric assays for cell division are rapid and eliminate the use of radioactive isotopes	678
Bromodeoxyuridine-based assays for cell division use antibodies to detect newly synthesized DNA	678
Propidium iodide enables analysis of the cell cycle status of cell populations	678
Carboxyfluorescein succinimidyl ester can be used to follow cell division	679
Assays of Cell Death	679
The ^{51}Cr release assay was the first assay used to measure cell death	679
Fluorescently labeled annexin V measures phosphatidyl serine in the outer lipid envelope of apoptotic cells	680
The TUNEL assay measures apoptotically generated DNA fragmentation	680
Caspase assays measure the activity of enzymes involved in apoptosis	681
Biochemical Approaches Used to Elucidate Signal Transduction Pathways	681
Biochemical inhibitors are often used to identify intermediates in signaling pathways	681
Many methods are used to identify proteins that interact with molecules of interest	682
Whole Animal Experimental Systems	682
Animal research is subject to federal guidelines that protect nonhuman research subjects	682
Inbred strains can reduce experimental variation	683
Congenic resistant strains are used to study the effects of particular gene loci on immune responses	684
Adoptive transfer experiments allow <i>in vivo</i> examination of isolated cell populations	684
Chapter 18	684
Immunodeficiency Disorders	688
Primary Immunodeficiencies	688
Combined immunodeficiencies show a defect in both cell and humoral immunity	688
Cell-specific immunodeficiencies affect a single cell type	689
Humoral immunodeficiencies affect antibody production	690
Secondary Immunodeficiencies	690
Immunodeficiencies can be induced by genetic, environmental, or infectious agents	690
Transgenic and Knockout Mice	694
Transgenic animals carry genes that have been artificially introduced	694
Knock-in and knockout technologies replace an endogenous with a nonfunctional or engineered gene copy	695
The cre/lox system enables inducible gene deletion in selected tissues	697
SUMMARY	699
REFERENCES	699
USEFUL WEB SITES	699
STUDY QUESTIONS	699
Appendix I	A-1
CD Antigens	A-1
Appendix II	B-1
Cytokines	B-1
Appendix III	C-1
Chemokines and Chemokine Receptors	C-1
Glossary	G-1
Answers to Study Questions	AN-1
Index	I-1
Cancer and the Immune System	627
Terminology and Common Types of Cancer	627
Malignant Transformation of Cells	628
DNA alterations can induce malignant transformation	628
Immunobiological Basis of Cancer	629
Understanding of cancer induction	629
Genes associated with cancer control cell proliferation and survival	629
Immune cells can be recruited to tumor cells	630
Malignant transformation involves multiple steps of tumor cell transformation	633
Antigenic Specificity	634
Antigen-specific molecules are unique to each antigen	634