contents

preface  xiii
acknowledgments  xv
about this book  xviii

A new paradigm for Big Data 1

1.1
1.2

1:3
1.4

-

1.5

1.6

How this book is structured 2

Scaling with a traditional database 3
Scaling with a queue 3 = Scaling by sharding the database 4
Fault-tolerance issues begin - 5 = Corruption issues 5 = What
went wrong? 5 « How will Big Data techniques help? 6

NoSQL is not a panacea 6

First principles 6

Desired properties of a Big Data system 7

Robustness and fault tolerance 7 = Low latency reads and
updates 8 = Scalability 8 = Generalization 8 = Extensibility 8
Ad hoc queries 8 = Minimal maintenance 9 = Debuggability 9

The problems with fully incremental architectures 9

Operational complexity 10 = Extreme complexity of achieving
eventual consistency 11 = Lack of human-fault tolerance 12
Fully incremental solution vs. Lambda Architecture solution 13



CONTENTS

1.7 Lambda Architecture 14

Batch layer 16 = Serving layer 17 = Batch and serving layers
satisfy almost all properties 17 » Speed layer 18

1.8 Recent trends in technology 20

CPUs aren’t getting faster 20 = Elastic clouds 21 = Vibrant
open source ecosystem for Big Data 21

1.9 Example application: SuperWebAnalytics.com 22
1.10 Summary 23

[ 1 BATCH LAYER tueeececcreererensessaseancsncessssssssssssssesnsnssnss 20

2 Data model for Big Data 27

2.1 The properties of data 29

Data is raw 31 = Data is immutable 34 = Data is eternally
true 36

2.2 The fact-based model for representing data 37

Example facts and their properties 37 = Benefits of the fact-based
model 39

2.3 Graph schemas 43

Elements of a graph schema 43 = The need for an enforceable
schema 44

2.4 A complete data model for SuperWebAnalytics.com 45
2.5 Summary 46

Data model for Big Data: Illustration 47
3.1 Why a serialization framework? 48
3.2 Apache Thrift 48

Nodes 49 = Edges 49 = Properties 50 » Tying everything
together into data objects 51 = Evolving your schema 51

3.3 Limitations of serialization frameworks 52

3.4 Summary 53

4 Data storage on the batch layer 54

4.1 Storage requirements for the master dataset 55

4.2 Choosing a storage solution for the batch layer 56

Using a key/value store for the master dataset 56 » Distributed
Silesystems 57

4.3
4.4
4.5
4.6
4.7

4.8

How distributed filesystems work 58

Storing a master dataset with a distributed filesystem 59
Vertical partitioning 61

Low-level nature of distributed filesystems 62

Storing the SuperWebAnalytics.com master dataset on a
distributed filesystem 64

Summary 64

Data storage on the batch layer: Illustration 65

5.1 Using the Hadoop Distributed File System 66
The small-files problem 67 = Towards a higher-level abstraction

5.2 Data storage in the batch layer with Pail 68
Basic Pail operations 69 = Serializing objects into pails 70
Baich operations using Pail 72 = Vertical partitioning with
Pail 73 = Pail file formats and compression 74 = Summarizing
the benefits of Pail 75

5.3 Storing the master dataset for SuperWebAnalytics.com 7
A structured pail for Thrift objects 77 = A basic pail for
SuperWebAnalytics.com 78 = A split pail to vertically partition
the dataset 78

5.4 Summary 82

Batch layer 83

6.1 Motivating examples 84
Number of pageviews over time 84 = Gender inference 85
Influence score 85

6.2 Computing on the batch layer 86

6.3 Recomputation algorithms vs. incremental algorithms 8t
Performance 89 » Human-fault tolerance 90 = Generality of the
algorithms 91 = Choosing a style of algorithm 91

6.4 Scalability in the batch layer 92

6.5 MapReduce: a paradigm for Big Data computing 93
Scalability 94 = Fault-tolerance 96 = Generality of MapReduce

6.6 Low-level nature of MapReduce 99

Multistep computations are unnatural 99 = Joins are very :
complicated to implement manually 99 = Logical and physical
execution tightly coupled 101



CONTENTS

6.7 Pipe diagrams: a higher-level way of thinking about batch
computation 102
Concepts of pipe diagrams 102 = Execuling pipe diagrams via
MapReduce 106 = Combiner aggregators 107 = Pipe diagram
examples 108

6.8 Summary 109

7 Batch layer: Illustration 111
| 7.1 An illustrative example 112

7.2 Common pitfalls of data-processing tools 114
Custom languages 114 = Poorly composable abstractions 115

7.3 Anintroduction to JCascalog 115
The JCascalog data model 116 = The structure of a [Cascalog
query 117 = Querying multiple datasets 119 = Grouping and
aggregators 121 = Stepping though an example query 122
Custom predicate operations 125

7.4 Composition 130

Combining subqueries 130 = Dynamically created
subqueries 131 = Predicate macros 134 = Dynamically
crealed predicate macros 136

7.5 Summary 138

:\ An example baich layer: Architecture and algorithms 139
J

8.1 Design of the SuperWebAnalytics.com batch layer 140
Supported queries 140 = Batch views 141

8.2 Workflow overview 144

8.3 Ingesting new data 145

8.4 URL normalization 146

8.5 User-identifier normalization 146
8.6 Deduplicate pageviews 151

8.7 Computing batch views 151

Pageviews over time 151 = Unique visitors over time 152
Bouncerate analysis 152

8.8 Summary 154

P 8 s

CONTENTS ix

9 An example batch layer: Implementation 156
9.1 Starting point 157
9.2 Preparing the workflow 158
9.3 Ingesting new data 158
9.4 URL normalization 162
9.5 User-identifier normalization 163
9.6 Deduplicate pageviews 168
9.7 Computing batch views 169

Pageviews over time 169 = Uniques over time 171 * Bounce-
rate analysis 172

9.8 Summary 175

PART 2 SERVING LAYER t0eccsecccsccscssessssscesssssesssssssssssecsssoes L 11

: f’} Serving layer 179
£ 101 Performance metrics for the serving layer 181
10.2 The serving layer solution to the normalization/
denormalization problem 183
10.3 Requirements for a serving layer database 185

10.4 Designing a serving layer for SuperWebAnalytics.com 186
Pageviews over time 186 = Uniques over time 187 = Bounce-
rate analysis 188

10.5 Contrasting with a fully incremental solution 188

Fully incremental solution to uniques over time 188 = Comparing
to the Lambda Architecture solution 194

10.6  Summary 195

|| Serving layer: Illustration 196
Basics of ElephantDB 197
View creation in ElephantDB 197 = View serving in
ElephantDB 197 = Using ElephantDB 198
11.2  Building the serving layer for SuperWebAnalytics.com 200

Pageviews over time 200 = Uniques over time 202 = Bounce-
rate analysis 203

11.3 Summary 204



) SPEED L ANVER S e e ssiilsiivecnsmsonin ey . R 205

' Realtime views 207

12.1 Computing realtime views 209

12.2  Storing realtime views 210

Eventual accuracy 211 = Amount of state stored in the speed
layer 211

12.3 Challenges of incremental computation 212

Validity of the CAP theorem 213 = The complex interaction
between the CAP theorem and incremental algorithms 214

12.4 Asynchronous versus synchronous updates 216
12.5 Expiring realtime views 217
126  Summary 219

"3 Realtime views: Illustration 220
) 13.1 Cassandra’s data model 220

13.2 Using Cassandra 222
Advanced Cassandra 224

13.3 Summary 224

4 Queuing and stream processing 225
14.1 Queuing 226
Single-consumer queue servers 226 » Multi-consumer
queues 228

14.2  Stream processing 229
Queues and workers 230 = Queues-and-workers pitfalls 231

14.3 Higher-level, one-at-a-time stream processing 231
Storm model 232 » Guaranteeing message processing 236

14.4 SuperWebAnalytics.com speed layer 238
Topology structure 240

145 Summary 241

5 Queuing and stream processing: lllustration 242
15.1 Defining topologies with Apache Storm 242
15.2  Apache Storm clusters and deployment 245
15.3 Guaranteeing message processing 247

CONTENTS

15.4 Implementing the SuperWebAnalytics.com uniques-over-time
speed layer 249

15.5 Summary 253

f 6 Micro-batch stream processing 254

F

17

1

16.1 Achieving exactly-once semantics 255

Strongly ordered processing 255 = Micro-batch stream
processing 256 = Micro-balch processing topologies 257

16.2  Core concepts of micro-batch stream processing 259
16.3 Extending pipe diagrams for micro-batch processing 260
16.4  Finishing the speed layer for SuperWebAnalytics.com 262

Pageviews over time 262 = Bounce-rate analysis 263
16.5 Another look at the bounce-rate-analysis example 267
16.6 Summary 268

Micro-batch stream processing: llustration 269
17.1 Using Trident 270
17.2  Finishing the SuperWebAnalytics.com speed layer 273

Pageviews over time 273 = Bounce-rate analysis 275

17.3  Fully fault-tolerant, in-memory, micro-batch processing 281
17.4  Summary 283

Lambda Architecture in depth 284

18.1 Defining data systems 285

18.2  Batch and serving layers 286

Incremental batch processing 286 = Measuring and optimizing
batch layer resource usage 293

18.3 Speed layer 297
18.4 Query layer 298
18.5 Summary 299

index 301



