Fundamentals of Geophysical Fluid Dynamics is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. This textbook was developed from the author's many years of teaching a first-year graduate course at the Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations.

Pre-publication praise

"... a delightfully refreshing introduction to graduate-level geophysical fluid dynamics. This well-written text includes a concise review of the needed applied mathematics, physics, and fluid dynamics. The text pulls examples not only from the atmospheres and oceans, but also from recent numerical studies and laboratory experiments in nonlinear dynamics, solitons, chaos and 2- and 3-dimensional turbulence, with an appropriate emphasis on their relevance to geophysical fluid dynamics. Some topics, for example geostrophic adjustment, are more clearly explained and are better physically motivated here than in any other text I have read. This book should not only be on the shelves of all geophysical fluid dynamicists, but also physicists, astronomers, and applied mathematicians."

Professor Philip Marcus, Department of Mechanical Engineering, University of California, Berkeley

"... a very good introductory text to geophysical fluid dynamics. Explanations of complex subjects are clear, concise, and insightful. Distracting and unnecessary details are avoided in discussions, and the organization of the material is well thought-out and logical ... ideal for use as a first exposure to the subject matter."

Dr. Leif Thomas, School of Oceanography, University of Washington

"Jim McWilliams' introductory book to the fundamentals of geophysical fluid dynamics is clearly written and well posed. The author relies on examples based on jets and vortices to introduce concepts such as turbulence, chaotic dynamics, bolus velocities, boundary layers, etc. that have not been extensively covered by existing textbooks. This book will therefore be very useful not only to graduate students, but also to scientists who are looking for a well-written reference book that is complementary to what is presently available."

Dr. Eric P. Chassignet, Rosenstiel School of Marine and Atmospheric Science,

r. **Eric P. Chassignet**, Rosenstiel School of Marine and Atmospheric Science, Division of Meteorology and Physical Oceanography, University of Miami

"McWilliams shows how the simplified models of geophysical fluid dynamics (GFD) can be used to explain the underlying physics in the complex turbulent flows in the Earth's atmosphere and oceans."

Professor John A. Johnson, School of Mathematics, University of East Anglia

Cover illustration: Landsat 7 satellite image of swirling clouds over Alexander Selkirk Island in the southern Pacific Ocean, as the result of a meteorological phenomenon known as a von Karman vortex. Rising precipitously from the surrounding waters, the island's highest point is nearly a mile (1.6 km) above sea level. As wind-driven clouds encounter this obstacle, they flow around it to form large, spinning eddies. Photo courtesy of NASA Goddard Space Flight Center.

www.cambridge.org

ISBN 978-0-521-85637

UNIVERSITY PR

CAMBRIDGE

Contents

1 /	ejuce			puge in		
Sy	mbols			xi		
1	Pur	poses a	nd value of geophysical fluid dynamics	1		
2	Fun	Fundamental dynamics				
	2.1	Fluid dynamics				
		2.1.1	Representations	8		
		2.1.2	Governing equations	9		
		2.1.3	Boundary and initial conditions	13		
		2.1.4	Energy conservation	14		
		2.1.5	Divergence, vorticity, and strain rate	16		
	2.2	iic approximations	-18			
		2.2.1	Mass and density	19		
		2.2.2	Momentum	22		
		2.2.3	Boundary conditions	24		
	2.3	Atmo	spheric approximations	27		
		2.3.1	Equation of state for an ideal gas	27		
		2.3.2	A stratified resting state	29		
		2.3.3	Buoyancy oscillations and convection	31		
		2.3.4	Hydrostatic balance	34		
		2.3.5	Pressure coordinates	35		
	2.4	Earth's rotation		39		
		2.4.1	Rotating coordinates	41		
		2.4.2	Geostrophic balance	43		
		2.4.3	Inertial oscillations	47		

vi Contents

3	Bar	otropic	and vortex dynamics			49
	3.1	Barotr	ropic equations			50
		3.1.1	Circulation			51
		3.1.2	Vorticity and potential v	orticity		54
		3.1.3	Divergence and diagnost	tic force balance		57
		3.1.4	Stationary, inviscid flow	S		59
	3.2		64			
		3.2.1	Point vortices			64
		3.2.2	Chaos and limits of pred	lictability		72
	3.3	Baroti	bility		73	
		3.3.1	Rayleigh's criterion for	vortex stability		73
		3.3.2	Centrifugal instability			75
		3.3.3	Barotropic instability of	parallel flows		76
	3.4	Eddy-	-mean interaction			80
	3.5	Eddy	viscosity and diffusion			83
	3.6	Emerg	gence of coherent vortices			86
	3.7	Two-c	limensional turbulence			88
4	Rot	ating sl	nallow-water and wave d	lynamics		95
	4.1	Rotati	ng shallow-water equation	ns		97
		4.1.1	Integral and parcel invar	iants	1	01
	4.2		r wave solutions		2.12	04
		4.2.1	Geostrophic mode		2.1.3 2.1.4	06
		4.2.2	Inertia-gravity waves		1	07
		4.2.3	Kelvin waves		215	09
	4.3	Geost	rophic adjustment		1.5.5	11
	4.4	1.1 Gravity ways steenening; horse and breakers				20
	4.5					26
	4.6	Quasi	geostrophy		1	29
	17 Pocchy waves		1	33		
	4.8	Rossb	y-wave emission		23.1	34
		4.8.1	Vortex propagation on the	he β -plane	E.E.S 1	35
		4.8.2	Eastern boundary Kelvin	wave	6.6.5	38
					2,3,4	
-	Dor	oalinia	and lot dynamics		23.5	41
5	Baroclinic and jet dynamics					41
	5.1		ed hydrostatic model			43
		5.1.1	Two-layer equations			43
		5.1.2	N-layer equations Vertical modes			47
		1.1.1	vernear modes			4

Contents	vi

5.2	Baroc	linic instability	155
	5.2.1	Unstable modes	156
	5.2.2	Upshear phase tilt	160
	5.2.3	Eddy heat flux	161
	5.2.4	Effects on the mean flow	162
5.3	Turbu	lent baroclinic zonal jet	164
	5.3.1	Posing the jet problem	164
	5.3.2	Equilibrium velocity and buoyancy structure	167
	5.3.3	Zonal momentum balance	171
	5.3.4	Potential vorticity homogenization	177
	5.3.5	Meridional overturning circulation and mass balance	177
	5.3.6	Meridional heat balance	180
	5.3.7	Maintenance of the general circulation	181
5.4	Rectif	ication by Rossby-wave radiation	182
Bou	ındary-	layer and wind-gyre dynamics	186
6.1	Planet	ary boundary layer	186
	6.1.1	Boundary-layer approximations	187
	6.1.2	The shear boundary layer	192
	6.1.3	Eddy-viscosity closure	196
	6.1.4	Bottom Ekman layer	197
	6.1.5	Oceanic surface Ekman layer	201
	6.1.6	Vortex spin down	205
	6.1.7	Turbulent Ekman layer	206
6.2	Oceanic wind gyre and western boundary layer		213
	6.2.1	Posing the gyre problem	215
	6.2.2	Interior and boundary-layer circulations	219
	6.2.3	Application to real gyres	224
	6.2.4	Turbulent baroclinic wind gyres	228
fterwo	ord		233
xercis	es		234
eferen	ices		243
idex			245

Colour plate section appears between pages 94 and 95