This text presents topos theory as it has developed from the study of sheaves. Sheaves arose in geometry as coefficients for cohomology and as descriptions of the functions appropriate to various kinds of manifolds (algebraic, analytic, etc.). Sheaves also appear in logic as carriers for models of set theory as well as for the semantics of other types of logic. Grothendieck introduced a topos as a category of sheaves for algebraic geometry. Subsequently, Lawvere and Tierney obtained elementary axioms for such (more general) categories.

This introduction to topos theory begins with a number of illustrative examples that explain the origin of these ideas and then describes the sheafification process and the properties of an elementary topos. The applications to axiomatic set theory and the use in forcing (the Independence of the Continuum Hypothesis and of the Axiom of Choice) are then described. Geometric morphisms—like continuous maps of spaces—and the construction of classifying topoi, for example those related to local rings and simplicial sets, next appear, followed by the use of locales (pointless spaces) and the construction of topoi related to geometric languages and logic. This is the first text to address all of these varied aspects of topos theory at the graduate student level.

Contents

Pref	ace	vii	
Prologue			
Cate	gorical Preliminaries	10	
I.	Categories of Functors 1. The Categories at Issue	24 24 20	
	 Pullbacks Characteristic Functions of Subobjects Typical Subobject Classifiers 	25 31 35	
	5. Colimits 6. Exponentials	39 44 48	
	7. Propositional Calculus 8. Heyting Algebras 9. Quantifiers as Adjoints	40 50 57	
	Exercises	62	
II.	Sheaves of Sets	64	
	1. Sheaves 2. Sieves and Sheaves	65 69	
	 Sheaves and Manifolds Bundles 	73 79	
	5. Sheaves and Cross-Sections	83 88	
	 6. Sheaves as Etale Spaces 7. Sheaves with Algebraic Structure Sheaves are Typical 	95 97	
	 Sheaves are Typical Inverse Image Sheaf Exercises 	99 103	
III.	Grothendieck Topologies and Sheaves	106	
	1. Generalized Neighborhoods	106 109	
	3. The Zariski Site	116 121	
	A Sheaves on a Sile	THY	

Cont	ten	ts

	F The Accepted Sheef Functor	128
	6 First Proporties of the Category of Sheaves	134
	7. Subabient Classifiers for Sites	140
	Cubebassiners for Sites	145
	8. Subsheaves	150
	9. Continuous Group Actions	155
	Exercises	100
IV.	First Properties of Elementary Topoi	161
	1. Definition of a Topos	161
	2. The Construction of Exponentials	167
	3. Direct Image	171
	4. Monads and Beck's Theorem	176
	5. The Construction of Colimits	180
	6. Factorization and Images	184
	7. The Slice Category as a Topos	190
	8. Lattice and Heyting Algebra Objects in a Topos	198
	9. The Beck-Chevalley Condition	204
	10. Injective Objects	210
	Exercises	213
v.	Basic Constructions of Topoi	218
	1. Lawvere-Tierney Topologies	219
	2. Sheaves	223
	3. The Associated Sheaf Functor	227
	4. Lawvere-Tierney Subsumes Grothendieck	233
	5. Internal Versus External	235
	6. Group Actions	237
	7. Category Actions	240
	8. The Topos of Coalgebras	247
	9. The Filter-Quotient Construction	256
	Exercises	263
VI.	Topoi and Logic	267
	1. The Topos of Sets	268
	2. The Cohen Topos	277
	3. The Preservation of Cardinal Inequalities	284
	4. The Axiom of Choice	291
	5. The Mitchell-Bénabou Language	296
	6. Kripke-Joyal Semantics	302
	7. Sheaf Semantics	315
	8. Real Numbers in a Topos	318
	9. Brouwer's Theorem: All Functions are Continuous	324
	10. Topos-Theoretic and Set-Theoretic Foundations	331
	Exercises	343

Contents

VII.	Geometric Morphisms	347
	1. Geometric Morphisms and Basic Examples	348
	2. Tensor Products	353
	3. Group Actions	361
	4. Embeddings and Surjections	366
	5. Points	378
	6. Filtering Functors	384
	7. Morphisms into Grothendieck Topoi	390
	8. Filtering Functors into a Topos	394
	9. Geometric Morphisms as Filtering Functors	399
	10. Morphisms Between Sites	407
	Exercises	414
VIII	. Classifying Topoi	419
	1. Classifying Spaces in Topology	420
	2. Torsors	423
	3. Classifying Topoi	432
	4. The Object Classifier	434
	5. The Classifying Topos for Rings	437
	6. The Zariski Topos Classifies Local Rings	445
	7. Simplicial Sets	450
	8. Simplicial Sets Classify Linear Orders	455
	Exercises	466
IX.	Localic Topoi	470
	1. Locales	471
	2. Points and Sober Spaces	473
	3. Spaces from Locales	475
	4. Embeddings and Surjections of Locales	480
	5. Localic Topoi	487
	6. Open Geometric Morphisms	491
	7. Open Maps of Locales	500
	8. Open Maps and Sites	506
	9. The Diaconescu Cover and Barr's Theorem	511
	10. The Stone Space of a Complete Boolean Algebra	514
	11. Deligne's Theorem	519
	Exercises	521
x.	Geometric Logic and Classifying Topoi	526
	1. First-Order Theories	527
	2. Models in Topoi	530
	3. Geometric Theories	533
	4. Categories of Definable Objects	539

xi

Contents

5.	Syntactic Sites	553
6.	The Classifying Topos of a Geometric Theory	559
7.	Universal Models	566
	Exercises	569
Append	ix: Sites for Topoi	. 572
1.	Exactness Conditions	572
2.	Construction of Coequalizers	575
3.	The Construction of Sites	578
4.	Some Consequences of Giraud's Theorem	587
Epilogue		596
Bibliography		
Index o	f Notation	613
Index		617