
This text presents topos theory as it has developed from the study 
of sheaves. Sheaves arose in geometry as coefficients for co
homology and as descriptions of the functions appropriate to 
various kinds of manifolds (algebraic, analytic, etc.). Sheaves also 
appear in logic as carriers for models of set theory as well as for 
the semantics of other types of logic. Grothendieck introduced a 
topos as a category of sheaves for algebraic geometry. Subse
quently, Lawvere and Tierney obtained elementary axioms for 
such (more general) categories.

This introduction to topos theory begins with a number of illustra
tive examples that explain the origin of these ideas and then 
describes the sheafification process and the properties of an 
elementary topos. The applications to axiomatic set theory and 
the use in forcing (the Independence of the Continuum Hypoth
esis and of the Axiom of Choice) are then described. Geometric 
morphisms—like continuous maps of spaces—and the construc
tion of classifying topoi, for example those related to local rings 
and simplicial sets, next appear, followed by the use of locales 
(pointless spaces) and the construction of topoi related to geo
metric languages and logic. This is the first text to address all of 
these varied aspects of topos theory at the graduate student level.
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