CONTENTS

ix/x

Prefac	tes to the English editions	ix/x
E. M.	Lifshitz	AI
Notat	ion	XIII
	L IDEAL FLUIDS	
§1.	The equation of continuity	1
§2.	Euler's equation	2
§3.	Hydrostatics	5
§4.	The condition that convection be absent	7
§5.	Bernoulli's equation	8
§6.	The energy flux	9
§7.	The momentum flux	11
§8.	The conservation of circulation	12
§9.	Potential flow	14
§10.	Incompressible fluids	17
§11.	The drag force in potential flow past a body	26
§12.	Gravity waves	31
§13.	Internal waves in an incompressible fluid	37
§14.	Waves in a rotating fluid	40
	II. VISCOUS FLUIDS	
§15.	The equations of motion of a viscous fluid	44
§16.	Energy dissipation in an incompressible fluid	50
§17.	Flow in a pipe	51
§18.	Flow between rotating cylinders	55
§19.	The law of similarity	56
§20.	Flow with small Reynolds numbers	58
§21.	The laminar wake	67
§22.	The viscosity of suspensions	73
§23.	Exact solutions of the equations of motion for a viscous fluid	75
§24.	Oscillatory motion in a viscous fluid	83
§25.	Damping of gravity waves	92
	III. TURBULENCE	
826	Ctability of standy flam	0.5
\$20.	Stability of steady now	95
927.	Stability of fotary llow	102
928.	Stability of now in a pipe	103
929.	Instability of tangential discontinuities	106
§30.	Quasi-periodic flow and frequency locking	108
§31.	Strange attractors	113
§32.	Transition to turbulence by period doubling	118

/1	Contents	
\$33.	Fully developed turbulence	129
\$34.	The velocity correlation functions	135
§35.	The turbulent region and the phenomenon of separation	146
§36.	The turbulent jet	147
§37.	The turbulent wake	152
§38.	Zhukovskii's theorem	153
	IV. BOUNDARY LAYERS	
\$39.	The laminar boundary layer	157
§40.	Flow near the line of separation	163
\$41.	Stability of flow in the laminar boundary layer	167
§42.	The logarithmic velocity profile	172
§43.	Turbulent flow in pipes	176
§44.	The turbulent boundary layer	178
§45.	The drag crisis	180
§46.	Flow past streamlined bodies	183
§47.	Induced drag	185
§48.	The lift of a thin wing	189
	V. THERMAL CONDUCTION IN FLUIDS	
849.	The general equation of heat transfer	192
\$50.	Thermal conduction in an incompressible fluid	196
\$51.	Thermal conduction in an infinite medium	200
\$52.	Thermal conduction in a finite medium	203
§53.	The similarity law for heat transfer	208
§54.	Heat transfer in a boundary layer	210
§55.	Heating of a body in a moving fluid	214
§56.	Free convection	217
§57.	Convective instability of a fluid at rest	221
	VI. DIFFUSION	
§58.	The equations of fluid dynamics for a mixture of fluids	227
§59.	Coefficients of mass transfer and thermal diffusion	230
§60.	Diffusion of particles suspended in a fluid	235
	VII. SURFACE PHENOMENA	
§61.	Laplace's formula	238
§62.	Capillary waves	244
§63.	The effect of adsorbed films on the motion of a liquid	248
	VIII. SOUND	
\$64	Sound waves	251
\$65	The energy and momentum of sound waves	255
\$66.	Reflection and refraction of sound waves	259
\$67.	Geometrical acoustics	260
§68.	Propagation of sound in a moving medium	263
\$69	Characteristic vibrations	266

§69. Characteristic vibrations

0		100
(on	(PN)	1.5
20111		

vii

\$70.	Spherical waves	269
\$71.	Cylindrical waves	271
\$72.	The general solution of the wave equation	273
\$73.	The lateral wave	276
§74.	The emission of sound	281
\$75.	Sound excitation by turbulence	289
\$76.	The reciprocity principle	292
\$77.	Propagation of sound in a tube	294
\$78.	Scattering of sound	297
\$79.	Absorption of sound	300
§80.	Acoustic streaming	305
§81.	Second viscosity	308
the second se		

IX. SHOCK WAVES

\$82.	Propagation of disturbances in a moving gas	313
\$83.	Steady flow of a gas	316
§84.	Surfaces of discontinuity	320
\$85.	The shock adiabatic	324
\$86.	Weak shock waves	327
\$87.	The direction of variation of quantities in a shock wave	329
\$88.	Evolutionary shock waves	331
\$89.	Shock waves in a polytropic gas	333
§90.	Corrugation instability of shock waves	336
\$91.	Shock wave propagation in a pipe	343
\$92.	Oblique shock waves	345
\$93.	The thickness of shock waves	350
\$94.	Shock waves in a relaxing medium	355
\$95.	The isothermal discontinuity	356
\$96.	Weak discontinuities	358

X. ONE-DIMENSIONAL GAS FLOW

§97.	Flow of gas through a nozzle	361
§98.	Flow of a viscous gas in a pipe	364
§99.	One-dimensional similarity flow	366
§100.	Discontinuities in the initial conditions	373
§101.	One-dimensional travelling waves	378
§102.	Formation of discontinuities in a sound wave	385
§103.	Characteristics	391
§104.	Riemann invariants	394
§105.	Arbitrary one-dimensional gas flow	397
§106.	A strong explosion	403
§107.	An imploding spherical shock wave	406
§108.	Shallow-water theory	411

XI. THE INTERSECTION OF SURFACES OF DISCONTINUITY

§109.	Rarefaction waves	414
§110.	Classification of intersections of surfaces of discontinuity	419

viii	Contents	
§111.	The intersection of shock waves with a solid surface	425
\$112.	Supersonic flow round an angle	427
§113.	Flow past a conical obstacle	432
	XII. TWO-DIMENSIONAL GAS FLOW	
§114.	Potential flow of a gas	435
§115.	Steady simple waves	438
§116.	Chaplygin's equation: the general problem of steady two-dimensional gas flow	447
8117	Characteristics in steady two-dimensional flow	445
\$118	The Fuler-Tricomi equation Transonic flow	447
\$110	Solutions of the Fuler-Tricomi equation near non-singular points of	
y117.	the sonic surface	452
8120	Flow at the velocity of sound	456
§121.	The reflection of a weak discontinuity from the sonic line	461
	XIII. FLOW PAST FINITE BODIES	
8122	The formation of shock waves in supersonic flow past bodies	467
8123	Supersonic flow past a pointed body	470
8124	Subsonic flow past a thin wing	474
8125	Supersonic flow past a wing	476
8126	The law of transonic similarity	479
§127.	The law of hypersonic similarity	481
	XIV. FLUID DYNAMICS OF COMBUSTION	
8128	Slow combustion	484
\$129	Detonation	489
8130	The propagation of a detonation wave	494
\$131.	The relation between the different modes of combustion	500
§132.	Condensation discontinuities	503
	XV. RELATIVISTIC FLUID DYNAMICS	
8133.	The energy-momentum tensor	505
8134	The equations of relativistic fluid dynamics	506
8135	Shock waves in relativistic fluid dynamics	510
§136.	Relativistic equations for flow with viscosity and thermal conduction	512
	XVI. DYNAMICS OF SUPERFLUIDS	
8137	Principal properties of superfluids	515
\$138	The thermo-mechanical effect	517
8130	The equations of superfluid dynamics	518
\$140	Dissinative processes in superfluids	523
8141	The propagation of sound in superfluids	526
3141.	the propagation of bound in superiords	

Index

533