

'This is a vital primer to what is "Big" about Geocomputation: new data (and lots of them), innovative methods of analysis, new geographic information technologies and, above all, an over-arching rethink of how we represent geography. It provides an important and strategic contribution to contemporary scientific geography and data analytics.'

Paul Longley, Professor of Geographic Information Science, University College London

Geocomputation is the intersection of advanced computational methods and geographical analysis and modelling. Geocomputation is applied and often interdisciplinary, with methodological developments typically embedded in applications seeking to address real world problems. Geocomputation excels as a framework for researching many contemporary social science problems associated with large volumes of dynamic and spatio-temporal 'big data', such as those generated in 'smart city' contexts or from crowdsourcing.

This text:

- provides a selection of practical examples of geocomputation techniques and 'hot topics' written by world leading practitioners
- integrates selected supporting materials, such as code and data so that readers can work through some examples themselves

Chapters provide highly applied and practical discussions of:

- visualisation and exploratory spatial data analysis / space time modelling / spatial algorithms / spatial regression and statistics / open geographic information systems and science

All chapters are uniform in design, and each includes an introduction, case study and conclusion – drawing together both the generalities of the chapter topic and illustration through the case study application. Guidance for further reading is also provided.

This accessible text, published in full colour, has been specifically designed for those readers who are new to Geocomputation as an area of research, showing how complex real-world problems can be solved through the integration of technology, data, and geocomputational methods. This is the key primer for applied Geocomputation in the social sciences.

CHRIS BRUNSDON is Professor of Geocomputation at the National University of Ireland, Maynooth.

ALEX SINGLETON is a Reader in Geographic Information Science at the University of Liverpool.

SAGE www.sagepublications.com
Los Angeles • London • New Delhi • Singapore • Washington DC

ISBN 978-1-4462-7293-0

9 781446 272930

cover design • Francis Kenney

CONTENTS

About the Authors	vii
Preface	xiii
Introduction	xv
<i>Chris Brunsdon and Alex Singleton</i>	
Further Resources	xxi
PART I DESCRIBING HOW THE WORLD LOOKS	1
1 Spatial Data Visualisation with R	3
<i>James Cheshire and Robin Lovelace</i>	
2 Geographical Agents in Three Dimensions	21
<i>Paul M. Torrens</i>	
3 Scale, Power Laws, and Rank Size in Spatial Analysis	40
<i>Michael Batty</i>	
PART II EXPLORING MOVEMENTS IN SPACE	61
4 Agent-Based Modeling and Geographical Information Systems	63
<i>Andrew Crooks</i>	
5 Microsimulation Modelling for Social Scientists	78
<i>Kirk Harland and Mark Birkin</i>	
6 Spatio-Temporal Knowledge Discovery	97
<i>Harvey J. Miller</i>	
7 Circular Statistics	110
<i>David Rohde and Jonathan Corcoran</i>	
PART III MAKING GEOGRAPHICAL DECISIONS	135
8 Geodemographic Analysis	137
<i>Alexandros Alexiou and Alex Singleton</i>	

CONTENTS

9 Social Area Analysis and Self-Organizing Maps <i>Seth Spielman and David C. Folch</i>	152
10 Kernel Density Estimation and Percent Volume Contours <i>Daniel Lewis</i>	169
11 Location-Allocation Models <i>Melanie Tomintz, Graham Clarke and Nawaf Alfadhl</i>	185
PART IV EXPLAINING HOW THE WORLD WORKS 199	
12 Geographically Weighted Generalised Linear Modelling <i>Tomoki Nakaya</i>	201
13 Spatial Interaction Models <i>Karyn Morrissey</i>	221
14 Python Spatial Analysis Library (PySAL): An Update and Illustration <i>Sergio J. Rey</i>	233
15 Reproducible Research: Concepts, Techniques and Issues <i>Chris Brunsdon and Alex Singleton</i>	254
PART V ENABLING INTERACTIONS 265	
16 Using Crowd-Sourced Information to Analyse Changes in the Onset of the North American Spring <i>Chris Brunsdon and Lex Comber</i>	267
17 Open Source GIS Software <i>Oliver O'Brien</i>	281
18 Public Participation in Geocomputation to Support Spatial Decision-Making <i>Richard Kingston</i>	301
Conclusion: The Future of Applied Geocomputation <i>Chris Brunsdon and Alex Singleton</i>	320
References	327
Index	364