Fundamental Theories of Physics 180

Lawrence P. Horwitz

Relativistic Quantum Mechanics

This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. The full gauge invariance of the Stueckelberg-Schroedinger equation results in a 5D generalization of the usual gauge theories. A description of this structure and some of its consequences for both Abelian and non-Abelian fields are discussed. A review of the basic foundations of relativistic classical and quantum statistical mechanics is also given. The Bekenstein-Sanders construction for imbedding Milgrom's theory of modified spacetime structure into general relativity as an alternative to dark matter is also studied.

Physics

▶ springer.com

Contents

1	in the Construction of a Relativistic Quantum Theory				
	1.1	States in Relativistic Quantum and Classical Mechanics	1		
	1.2	The Problem of Localization for the Solutions of Relativistic	1		
	1.2	Wave Equations	3		
2	Relativistic Classical and Quantum Mechanics				
	2.1	The Einstein Notion of Time	9		
	2.2	Classical Mechanics	18		
	2.3	The Quantum Theory	20		
	2.4	The Newton-Wigner Problem	22		
	2.5	The Landau-Peierls Problem	24		
	App	endix A	30		
3	Spin, Statistics and Correlations				
	3.1	Relativistic Spin and the Dirac Representation	33		
	3.2	The Many Body Problem with Spin, and Spin-Statistics	42		
	3.3	Construction of the Fock Space and Quantum Field Theory	44		
	3.4	Induced Representation for Tensor Operators	47		
	App	endix B	49		
4	Gauge Fields and Flavor Oscillations				
	4.1	Abelian Gauge Fields	51		
	4.2	Nonabelian Gauge Fields and Neutrino Oscillations	59		
	4.3	The Hamiltonian for the Spin $\frac{1}{2}$ Neutrinos	65		
	4.4	CP and T Conjugation	67		
5	The Relativistic Action at a Distance Two Body Problem				
	5.1	The Two Body Bound State for Scalar Particles	72		
	5.2	Some Examples	84		
	5.3	The Induced Representation	88		
	5.4	The Stueckelberg String	93		

viii	Contents
------	----------

6	Expe	erimental Consequences of Coherence in Time	97	
	6.1	General Problem of Coherence in Time	97	
	6.2	The Lindner Experiment	98	
	6.3	Experiment Proposed by Palacios et al	110	
7	Scat	tering Theory and Resonances	113	
	7.1	Foundations of Relativistic Scattering Theory	114	
	7.2	The S Matrix	116	
	7.3	Cross Sections	121	
	7.4	Two Body Partial Wave Analysis	122	
	7.5	Unitarity and the Levinson Theorem	125	
	7.6	Resonances and Semigroup Evolution	126	
	7.7	Lax Phillips Theory	130	
	7.8	Relativistic Lee-Friedrichs Model	137	
8	Som	e Applications: The Electron Anomalous Moment,		
	Inva	riant Berry Phases and the Spacetime Lattice	143	
	8.1	The Anomalous Moment of the Electron	144	
	8.2	Invariant Berry Phases	149	
	8.3	The Spacetime Lattice	153	
9	Han	niltonian Map to Conformal Modification		
	of S	pacetime Metric: Kaluza-Klein and TeVeS	157	
	9.1	Dynamics of a Relativistic Geometric Hamiltonian System	158	
	9.2	Addition of a Scalar Potential and Conformal Equivalence	159	
	9.3	TeVeS and Kaluza-Klein Theory	163	
	9.4	The Bekenstein-Sanders Vector Field as a Gauge Field	165	
	9.5	Summary	172	
10	Rela	tivistic Classical and Quantum Statistical Mechanics		
	and	Covariant Boltzmann Equation	173	
	10.1	A Potential Model for the Many Body System	174	
	10.2	The Microcanonical Ensemble	175	
		Canonical Ensemble	179	
	10.4	Grand Canonical Ensemble	184	
	10.5	Relativistic Quantum Quantum Statistical Mechanics	187	
		Relativistic High Temperature Boson Phase Transition		
	10.7	Black Body Radiation	193	
		Manifestly Covariant Relativistic Boltzmann Equation	196	
11	Disc	ussion	201	
Ref	erenc	es	203	
Index				