Contents

S	ymbo	ols		xix
1	Int	roduct	ion	1
-	11	Obse	rvations	1
	1.1	1.1.1	Microscopic and macroscopic properties of solids	1
		1.1.2	Physical characteristics of crystals	1
		1.1.3	Physical properties of crystals	2
		1.1.4	Thermodynamic properties of crystals	8
		1.1.5	So what do some simple observations tell us?	10
	12	Leng	th scales and time scales	12
	13	Tools	of the trade	13
	1.0	1.3.1	Theoretical and mathematical tools	13
		1.3.2	Experimental tools	15
		1.3.3	Special tools and concepts for the study of the structure	191
			and dynamics of crystals	16
		Summ	nary of chapter	17
		Furth	er reading for Chapter 1	17
2	Stru	ucture	of materials	18
	2.1	Introd	luction	18
	2.2	Cryst	al structures of the elements	19
		2.2.1	Close-packed metals	19
		2.2.2	Body-centred cubic packing	25
		2.2.3	Simple cubic packing	25
		2.2.4	Crystal structures of elements with covalent bonding	26
		2.2.5	Diatomic molecular structures and other molecular	
			elements	27
		2.2.6	Summary of the structures of the elements	29
	2.3	Crysta	al structures of some simple inorganic compounds	29
		2.3.1	Diatomic compounds	29
		2.3.2	Ionic packing	31
		2.3.3	Crystals with general formula AX_m , and the general idea	
	~ .		of coordination polyhedra	32
	2.4	The p	erovskite family of crystal structures	35
		2.4.1	The ideal perovskite structure	35
		2.4.2	Ferroelectric phase transitions in perovskites	37
		2.4.3	Rotational phase transitions	38
		2.4.4	Effects of chemical variation	39
		2.4.5	Variations on the perovskite theme	40

	2.5	Organ	nic crystals	40
	2.6	Disor	dered materials	41
		2.6.1	The importance of structural disorder	41
		2.6.2	Orientational disorder in molecular crystals	41
		2.6.3	Orientational disorder in framework structures	42
		2.6.4	Fast-ion conductors	43
		2.6.5	Liquid crystals	43
	2.7	Glass	es and amorphous phases	44
		2.7.1	Glasses and structural disorder	44
		2.7.2	Quantifying short-range order	45
		2.7.3	Amorphous and crystalline phases of silica	47
	2.8	Concl	lusions	48
		Sumn	nary of chapter	49
		Furth	er reading	50
		Exerc	ises	50
3	For	mal de	scription of crystal structures	52
	3.1	Introd	luction	52
	3.2	Cryst	al structure: lattices, unit cell, and atomic coordinates	53
		3.2.1	Definition of the crystal lattice	53
		3.2.2	The unit cell	54
		3.2.3	Lattices, lattice parameters, and symmetry: the seven	
			crystal systems	54
		3.2.4	Volume of the unit cell	56
		3.2.5	Conventional and primitive lattices: The 14 Bravais lattices	56
		3.2.6	Atomic coordinates	57
		3.2.7	Crystal structure as the convolution of the lattice and the	58
	22	Creat	al symmetry 1 Point symmetry operations	61
	5.5	2.2.1	Point symmetry	61
		332	The four point symmetry operations	61
		3.3.4	Combination of symmetry operations	64
		221	The 32 crystallographic point groups	65
	3.1	Appli	ration of the formalism of point groups	66
	5.4	3 4 1	Symmetry of the crystal	66
		342	Symmetry breaking transformations	68
	35	Cryst	al symmetry 2 Translational symmetry and space groups	70
	5.0	351	Translational symmetry	70
		3.5.2	Enumeration of the space groups	72
	36	Break	cing the rules: aperiodic structures, incommensurate	
	5.0	mater	rials, and quasicrystals	73
		3.6.1	Incommensurate or modulated structures	73
		3.6.2	Ouasicrystals	74
		Sum	nary of chapter	74
		Furth	er reading	75
		Exerc	cises	76

4	The	recip	rocal lattice	78
4	41	The c	concept of the reciprocal lattice	78
	4.1	Defin	itions	79
	7.4	4.2.1	Geometry of the reciprocal lattice and its link to the	
		1.2.1	crystal lattice	80
		4.2.2	Relationship between real and reciprocal lattice	
			parameters	81
		4.2.3	Interplanar spacing and the reciprocal lattice parameters	82
		4.2.4	Reciprocal lattice vectors and atomic structure	82
	4.3	Non-J	primitive lattices	82
		4.3.1	Some general principles and practical methods	82
		4.3.2	Primitive and non-primitive lattices: application to bcc	
			and fcc lattices	85
	4.4	The re	eciprocal lattice as the Fourier transform of the crystal lattic	e 86
	4.5	Recip	rocal space and the Brillouin zone	87
		Sumn	nary of chapter	89
		Furthe	er reading	90
		Exerc	ises	90
5	Ato	nic bo	nding in crystals	91
	5.1	Bondi	ng and the variety of crystal structures	91
	5.2	Thern	nodynamic preamble: the context of the binding energy	91
	5.3	Lattic	e energy	94
	5.4	Mode	ls of bonding	96
		5.4.1	Coulomb energy	96
		5.4.2	Repulsive interactions	98
		5.4.3	Combination of Coulomb and Born-Mayer interactions:	
			example of alkali halides	98
		5.4.4	Dispersive interactions: binding in molecular crystals	99
		5.4.5	Shell models	100
		5.4.6	Hydrogen bonds	101
		5.4.7	Empirical representations of covalent and metallic	
			bonding	102
	5.5	Quant	um mechanical view of chemical bonding	105
		5.5.1	The need to take a proper quantum-mechanical view	105
		5.5.2	Born–Oppenheimer approximation	106
		5.5.3	Bloch's theorem for electrons in a periodic structure	106
		5.5.4	Simple view of bonding in molecules	107
		5.5.5	Tight-binding methods	108
		5.5.6	Electron-electron interactions: Hartree-Fock and beyond	110
		5.5.7	Representation of electronic wave functions	112
		5.5.8	Practical calculations of binding energies from quantum	
		C	mechanics	114
		Summ	ary of chapter	114
		Furthe	rreading	115
		Exercis	ses	115

6	Diff	raction	a respected builder in the second solution is a second solution of	117
	6.1	Basic	s of diffraction	117
		6.1.1	Use of radiation beams	117
		6.1.2	Bragg's law	118
		6.1.3	Single-crystal and powder diffraction measurements	118
		6.1.4	Diffraction and crystal structures	119
	6.2	Beam	s of radiation and measurement of diffraction patterns	119
		6.2.1	Laboratory X-ray methods	119
		6.2.2	Measurement of the intensity of scattered X-ray beams	120
		6.2.3	Synchrotron X-ray sources	122
		6.2.4	Neutron beams	123
		6.2.5	Comparison of the characteristics of X-ray and neutron	
			beams	126
		6.2.6	Beams of electrons	129
	6.3	Basic	s of the theory of diffraction	129
		6.3.1	The wave equation	129
		6.3.2	Scattering of radiation from two particles	130
		6.3.3	Scattering of radiation from a collection of particles	132
	6.4	Scatte	ering of radiation from a continuous distribution of	
		partic	les	133
		6.4.1	General principle	133
		6.4.2	X-ray atomic scattering factor	133
		6.4.3	Neutron scattering factors	134
	6.5	Diffra	action and Fourier analysis	134
		6.5.1	Scattering processes as Fourier transforms	134
		6.5.2	Fourier transforms and convolution	135
	6.6	Appli	cation: the structure of glasses revealed by neutron	
		scatte	ring	136
	6.7	Diffra	action from crystalline materials	138
		6.7.1	Fourier transform of the perfect crystal	138
		6.7.2	The effect of particle size on the diffraction pattern	140
		6.7.3	The inverse transform: obtaining the electron	
			density from X-ray diffraction measurements of the	
			structure factor	140
		6.7.4	The phase problem	141
	6.8	Effect	ts of symmetry on diffraction patterns	142
		6.8.1	Friedel's law	142
		6.8.2	Point symmetry of diffraction patterns	144
		6.8.3	Centre of symmetry	145
		6.8.4	Systematic absences	145
		6.8.5	Determination of space-group symmetry	147
	6.9	Soluti struct	on of the phase problem and determination of crystal ure	149
		6.9.1	The origin of the phase problem	149
		6.9.2	Historical review of attempts to bypass the phase	
			problem	149
		6.9.3	Direct methods to overcome the phase problem	150
		6.9.4	Refinement of the crystal structure	151

		Sumi	nary of chapter	152
		Furth	er reading	153
		Exerc	vises	154
7	Phy	sical n	properties	156
1	71	Over	view	156
	1.1	711	Crystal anisotropy	156
		712	An introduction to tensors	157
		713	Field and matter tensors	158
	72	First-	rank tensors	158
	73	Secol	nd-rank tensors	158
	1.0	7.3.1	Basic ideas	158
		7.3.2	Stress as a second-rank tensor	160
		733	Strain as a second-rank tensor	160
		734	45° rotation of the strain tensor and the conversion	
		1.5.1	between tensile and shear strain	161
		73.5	Voigt notation	162
		7.3.6	Principal axes	163
		737	Symmetry and second-rank matter tensors	164
		738	Example of zero thermal expansion	164
	7.4	Third	-rank tensors	165
		7.4.1	Piezoelectricity	165
		7.4.2	Use of Voigt notation for third-rank tensors	169
		7.4.3	Transformations of third-rank tensors	169
	7.5	Fourt	h-rank tensors	171
		7.5.1	A hierachy of higher-order tensors	171
		7.5.2	The elasticity tensors	171
	7.6	Induc	ed changes in matter tensors	172
		7.6.1	Basic ideas	172
		7.6.2	Refractive index, the electro-optic effect, and the	
			photoelastic effect	172
		Sumn	nary of chapter	173
		Furthe	er reading	173
		Exerc	ises	173
3	Latt	tice dyn	namics	175
	8.1	Why o	do we need to consider dynamics?	175
	8.2	The h	armonic approximation	175
	8.3	Lattic	e vibrations of one-dimensional monatomic crystals	176
		8.3.1	The linear chain model	176
		8.3.2	Sound waves - vibrations with long wavelengths	177
		8.3.3	Vibrations with shorter wavelengths: general features	178
		8.3.4	Vibrations with shorter wavelengths: the special case of	
			$\lambda = 2a$	178
		8.3.5	Vibrations with shorter wavelengths: the general case	179
		8.3.6	Extension of model of monatomic chain to include	
		027	distant neighbours	180
		0.3.1	Reciprocal lattice, the Brillouin zone, and allowed	
			wave vectors	181

		8.3.8	Three-dimensional monatomic crystals:	
			general principles	18
	8.4	Dispe	rsion curves in face-centred cubic materials	18
		8.4.1	Dispersion curves of neon	18
		8.4.2	Dispersion curves of lead	18
		8.4.3	Dispersion curves of potassium	18
	8.5	Lattic	e vibrations of crystals with several atoms in the unit cell	18
		8.5.1	The basic model	18
		8.5.2	Solution for small wave vector	19
		8.5.3	General result	19
		8.5.4	Generalization for more complex cases: atomic motions	19
		8.5.5	Generalization for more complex cases:	
			the dynamical matrix	19
		8.5.6	Lattice dynamics of ionic crystals	19
		8.5.7	The lattice dynamics of the alkali halides	19
		8.5.8	The lattice dynamics of quartz	19
		Summ	hary of chapter	19
		Furthe	er reading	20
		Exerc	ises	20
,	The	rmody	namics and lattice dynamics	20
	9.1	The q	uantization of lattice vibrations	20
		9.1.1	Phonons: the quanta of harmonic lattice vibrations	20
		9.1.2	The Bose–Einstein relation, $n(\omega, T)$	20
		9.1.3	High-temperature behaviour	20
		9.1.4	Heat capacity	20
		9.1.5	Phonon free energy and entropy	20
	9.2	Thern	nodynamic functions for crystals	20
		9.2.1	Thermodynamic functions	20
		9.2.2	The Einstein model	20
		9.2.3	Density of states	20
		9.2.4	Density of states for acoustic modes	20
		9.2.5	Debye model of heat capacity	20
		9.2.6	Example of thermodynamic functions of fluorite, CaF ₂	20
	9.3	Atomi	ic displacements	21
		9.3.1	Normal mode coordinates	2
		9.3.2	Vibrational energy and amplitude	21
		9.3.3	Recasting the crystal Hamiltonian	21
		Summ	hary of chapter	21
		Furthe	er reading	21
		Exerci	ises	21
	Exp	erimen	ntal methods for measurements of vibrational	
0				21
0	frea	uencie	S	freed
.0	freq 10.1	uencies Introd	s uction	21
0	freq 10.1	uencies Introd Basic	s uction ideas of spectroscopy	21
0	freq 10.1 10.2 10.3	uencies Introd Basic Neutro	s uction ideas of spectroscopy on scattering techniques	21 21 21 21

10.3.2 Neutron scattering experimental methods: the triple-axis	210
spectrometer	219
10.3.3 General formalism of neutron scattering	222
10.3.4 Applications of neutron inelastic scattering	226
10.4 Inelastic X-ray scattering	228
10.5 Light scattering	228
10.5.1 Basic idea of Raman scattering	228
10.5.2 Mechanism of Raman spactroscopy	229
10.5.3 Applications of Raman spectroscopy	230
10.5.4 Britiouni scattering	231
10.6 Infrared absorption spectroscopy	231
Summary of chapter	200
Further reading	234
Exercises	234
11 Anharmonic interactions	236
11.1 Introduction	236
11.2 Thermal conductivity	239
11.3 Thermal expansion	241
11.3.1 Theory	241
11.3.2 Example: calculation of thermal expansion in	
fluorite	243
11.4 Temperature dependence of phonon frequencies	244
Summary of chapter	245
Further reading	246
Exercises	246
12 Displacive phase transitions	247
12.1 Introduction to displacive phase transitions	247
12.1.1 Importance of thermodynamic analysis	249
12.1.2 Various types of displacive phase transitions	250
12.2 Quantitative description of displacive phase transitions:	
the concept of the order parameter	252
12.2.1 The general definition of the order parameter	252
12.2.2 Examples of order parameters for specific phase	
transitions	254
12.2.3 Order parameters in other phase transitions	255
12.2.4 Experimental measurements of order parameter	255
12.2.5 First- and second-order phase transitions	256
12.3 Landau theory of displacive phase transitions	258
12.3.1 Qualitative behaviour of the free energy	258
12.3.2 Expansion of the free energy function for a second-order phase transition	250
12.3.3 Calculation of properties for a second-order phase	239
transition	259
12.3.4 First-order phase transitions	261
12.3.5 The range of validity of Landau theory	262
12.4 Soft mode theory of displacive phase transitions	263
12.4.1 Basic idea of the soft mode	263

	12.4.2 Ferroelectric soft modes	264
	12.4.3 Zone boundary (antiferroelectric) phase transitions	265
	12.4.4 Ferroelastic phase transitions	266
	12.4.5 Incommensurate phase transitions	266
12.	5 Lattice dynamical theory of the low-temperature phase	267
	12.5.1 Lattice dynamical theories	267
	12.5.2 Potential energy of the crystal	267
	12.5.3 Phonon free energy	268
	12.5.4 Full free energy and the Landau free energy	
	function	269
	12.5.5 Low-temperature behaviour	269
	Summary of chapter	270
	Further reading	272
	Exercises	272
A Rea	al crystals!	274
A.1	Reality against ideality	274
A.2	Point defects	275
	A.2.1 Vacancies: Schottky defects	275
	A.2.2 Interstitial defects: Frenkel defects	276
	A.2.3 Coupled charge substitutions and vacancies	276
	A.2.4 Colour centres	276
	A.2.5 Diffusion and atomic mobility	276
A.3	Large-scale imperfections	277
	A.3.1 Dislocations	277
	A.3.2 Grain boundaries	277
	A.3.3 Domains and domain walls	278
	A.3.4 Surfaces and surface reconstructions	278
	Summary of appendix	279
	Further reading	279
B Fou	rier analysis	280
B.1	Fourier transforms as the extension of Fourier series	280
B.2	One-dimensional Fourier transform	280
B.3	Some one-dimensional Fourier transforms	281
	B.3.1 Dirac δ function	281
	B.3.2 Slit function	281
	B.3.3 Symmetric exponential function	281
	B.3.4 Gaussian function	282
B.4	Convolution theorem	282
	Summary of appendix	283
	Further reading	283
C Sch	oenflies representation of the point groups	284
C.1	The Schoenflies and International systems	284
C.2	Schoenflies labelling of non-cubic point groups	284
C.3	Schoenflies labelling of the cubic point groups	285
	Summary of appendix	285
	Further reading	285

D	Rhombohedral, trigonal, and hexagonal unit cells	286
~	Summary of appendix	286
	Further reading	286
E	Space groups	287
-	E.1 Space group symbols	287
	E.2 Defining symmetry	288
	E.3 General and special positions	289
	E.4 The International Tables of Crystallography	290
	E 5 Relating general equivalent positions to actual atomic positions	290
	Summary of appendix	291
	Further reading	291
F	Lattice energy minimization	292
	Summary of appendix	292
G	Some notes on the variational theorem	293
	Summary of appendix	294
	Further reading	294
Н	Ewald sphere	295
	Summary of appendix	297
	Further reading	297
I	The Wilson plot	298
	Summary of appendix	299
	Further reading	299
J	Diffraction from isotropic materials	300
	J.1 Basic diffraction equations	300
	J.2 Isotropic orientational averages	300
	J.3 Pair distribution functions	301
	J.4 Reverse Fourier transform	302
	J.5 General approach to analysis of diffraction data	303
	Summary of appendix	303
	Further reading	303
K	Calculation of physical properties	304
	K.1 Expansion of the crystal energy	304
	K.2 Equilibrium condition and the elastic constant tensor	304
	K.3 Piezoelectric and dielectric tensors	305
	Summary of appendix	306
	Further reading	306
L	Partition function: some key results	307
	L.1 The definition and use of the partition function	307
	L.2 The free energy	307
	L.3 Some results	308
	L.3.1 Heat capacity	308

	Summary of appendix	
	Further reading	
M Lat	tice sums	
Sun	mary of appendix	
Furt	her reading	
N Mea	an-square atomic displa	acement and temperature factors
Sun	mary of appendix	survey of statewinger immeric softwire
Furt	her reading	
Solutio	ns to exercises	
Defense	Shareken States	
Kelerei	ices	
Index		