Didactics of Mathematics as a Scientific Discipline

Edited by

Rolf Biehler Roland W. Scholz Rudolf Sträßer Bernard Winkelmann

Institute for Didactics of Mathematics, University of Bielefeld, Germany

This book describes the state of the art in a new branch of science. The basic idea was to start from a general perspective on didactics of mathematics, to identify certain subdisciplines, and to suggest an overall structure or "topology" of the field of research of didactics of mathematics. The volume provides a sample of 30 original contributions from 10 different countries.

The reader will find the following chapters: (1) Preparing Mathematics for Students; (2) Teacher Education and Research on Teaching; (3)Interaction in the Classroom; (4) Technology and Mathematics Education; (5) Psychology of Mathematical Thinking; (6) Differential Didactics; (7) History and Epistemology of Mathematics and Mathematics Education; and (8) Cultural Framing of Teaching and Learning Mathematics.

The book will be of interest to all researchers in the field of didactics of mathematics. However, mathematics educators who are interested in the theory of their practice and teacher trainers will also appreciate the survey and the diverse stimulations and reflections given here. Prospective and practicing teachers of mathematics will find a variety of interesting spotlights on their practice, focusing on different ages and ability ranges in their students. In addition to persons directly engaged in mathematics education, the book as a whole and/or individual papers in it should be of interest to researchers from neighboring disciplines, such as mathematicians, general educators, educational psychologists, and cognitive scientists.

TABLE OF CONTENTS

fullematics ci

Preface

1. PREPARING MATHEMATICS FOR STUDENTS

Introduction Bernard Winkelmann	9
Eclectic approaches to elementarization: Cases of curriculum construction in the United States James T. Fey	15
Didactical engineering as a framework for the conception of teaching products <i>Michèle Artigue</i>	27
Mathematical curricula and the underlying goals Uwe-Peter Tietze	41
2. TEACHER EDUCATION AND RESEARCH ON TEACHING	
Introduction Rolf Biehler	55
Reflections on mathematical concepts as starting points for didactical thinking Hans-Joachim Vollrath	61
Beyond subject matter: A psychological topology of teachers' professional knowledge <i>Rainer Bromme</i>	73
Dialogue between theory and practice in mathematics education Heinz Steinbring	89
On the application of science to teaching and teacher education Thomas J. Cooney	103
3. INTERACTION IN THE CLASSROOM	
Introduction Rudolf Sträßer	117
Theoretical and empirical approaches to classroom interaction Maria G. Bartolini Bussi	121
Theoretical perspectives on interaction in the mathematics classroom Heinrich Bauersfeld	133

TABLE OF CONTENTS

Working in small groups: A learning situation? Colette Laborde	147
Mathematics classroom language: Form, function and force David Pimm	159
4. TECHNOLOGY AND MATHEMATICS EDUCATION	
Introduction Bernard Winkelmann	171
The role of programming: Towards experimental mathematics Rosamund Sutherland	177
Computer environments for the learning of mathematics David Tall	189
The role of cognitive tools in mathematics education Tommy Dreyfus	201
Intelligent tutorial systems Gerhard Holland	213
5. PSYCHOLOGY OF MATHEMATICAL THINKING	
Introduction Roland W. Scholz	225
The interaction between the formal, the algorithmic, and the intuitive components in a mathematical activity <i>Efraim Fischbein</i>	231
From Piaget's constructivism to semantic network theory: Applications to mathematics education - A microanalysis	247
The Sociohistorical School and the acquisition of mathematics Joachim Lompscher	263
Action-theoretic and phenomenological approaches to research in mathematics education: Studies of continually developing experts <i>Richard Lesh and Anthony E. Kelly</i>	277
6. DIFFERENTIAL DIDACTICS	
Introduction Roland W. Scholz	287
Mathematically retarded and gifted students Jens Holger Lorenz	291

TABLE OF CONTENTS	IX
Should girls and boys be taught differently? Gila Hanna	303
From "mathematics for some" to "mathematics for all" Zalman Usiskin	315
7. HISTORY AND EPISTEMOLOGY OF MATHEMATICS AND MATHEMATICS EDUCATION	
Introduction Rolf Biehler	327
The philosophy of mathematics and the didactics of mathematics Paul Ernest	335
The human subject in mathematics education and in the history of mathematics	
Michael Otte and Falk Seeger	351
Mogens Niss	367
The representational roles of technology in connecting mathematics with authentic experience James J. Kaput	379
8. CULTURAL FRAMING OF TEACHING AND LEARNING MATHEMATICS	
Introduction Rudolf Sträßer	399
Comparative international research in mathematics education David Robitaille and Cynthia Nicol	403
Cultural influences on mathematics teaching: The ambiguous role of applications in nineteenth-century Germany	415
Mathematics and ideology Richard Noss	431
Cultural framing of mathematics teaching and learning Ubiratan D'Ambrosio	443
LIST OF AUTHORS	457
SUBJECT INDEX	461