The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties".

This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.

For additional information and updates on this book, visit

www.ams.org/bookpages/ulect-63

Contents

Preface	ix
Introduction	1
Chapter 1. Differential graded categories	3
1.1. Definitions	3
1.2. Quasi-equivalences	5
1.3. Drinfeld's DG quotient	11
1.4. Pretriangulated equivalences	13
1.5. Bondal-Kapranov's pretriangulated envelope	14
1.6. Morita equivalences	15
1.7. Kontsevich's smooth proper dg categories	16
Chapter 2. Additive invariants	21
2.1. Definitions	21
2.2. Examples	22
2.3. Universal additive invariant	26
2.4. Computations	29
2.5. Lefschetz's fixed point formula	32
Chapter 3. Background on pure motives	35
Chapter 4. Noncommutative pure motives	41
4.1. Noncommutative Chow motives	41
4.2. Relation with Chow motives	41
4.3. Relation with Merkurjev-Panin's motives	46
4.4. Noncommutative ⊗-nilpotent motives	47
4.5. Noncommutative homological motives	47
4.6. Noncommutative numerical motives	48
4.7. Kontsevich's noncommutative numerical motives	49
4.8. Semi-simplicity	50
4.9. Noncommutative Artin motives	52
4.10. Functoriality	53
4.11. Weil restriction	54
Chapter 5. Noncommutative (standard) conjectures	57
5.1. Standard conjecture of type $C_{\rm nc}$	57
5.2. Standard conjecture of type $D_{\rm nc}$	58
5.3. Noncommutative nilpotence conjecture	59
5.4. Kimura-finiteness	59
5.5. All together	60

viii CONTENTS

Chapter 6. Noncommutative moti	vic Galois groups	63
6.1. Definitions		63
6.2. Relation with motivic Gale	ois groups	65
6.3. Unconditional version		65
6.4. Base-change short exact se	equence	66
Chapter 7. Jacobians of noncomm	nutative Chow motives	69
Chapter 8. Localizing invariants		71
8.1. Definitions		71
8.2. Examples		72
8.3. Universal localizing invaria	ant	73
8.4. Additivity		77
8.5. \mathbb{A}^1 -homotopy		79
8.6. Algebraic K-theory		82
8.7. Witt vectors		84
8.8. Natural transformations		85
Chapter 9. Noncommutative mixe	ed motives	87
9.1. Definitions		87
9.2. Relation with noncommuta	ative Chow motives	89
O O TYT : 1		89
	odsky's motivic homotopy theory	90
9.5. Relation with Voevodsky's		91
9.6. Relation with Levine's mix		93
9.7. Noncommutative mixed A		93
9.8. Kimura-finiteness	buttown entitles is well us	94
9.9. Coefficients		95
Chapter 10 Noncommutation and	Allored Into Food Waterball	
Chapter 10. Noncommutative mot	Tivic Hopi dg algebras	97
10.1. Definitions		97
10.2. Base-change short exact s	sequence	98
	tors	99
A.1. Definitions		99
		101
	enrichment	102
	s Ween in the learned even trataming of the	102
A.5. Symmetric monoidal struc	etures	103
Bibliography		105
0.5 P-V		100
Index		113