

Photo by Patrick Studdard.

Professor Bard has provided a valuable service by carefully explaining everything an undergraduate student of mathematics, or a teacher of these topics, needs to get started with Sage quickly and easily. It will also be useful for any student or teacher of another STEM discipline. There is an excellent mix of the most frequently used commands, along with warnings about common pitfalls or caveats. I highly recommend it for anyone new to Sage, or who desires an overview of the system's impressive capabilities.

—Robert A. Beezer, University of Puget Sound

This book is a sort of “Missing Manual” that explains how Sage can be used in a range of standard mathematics courses, instead of targeting specialists like much existing Sage documentation. The depth of content is very impressive, and describes—in a single coherent narrative—how to successfully use Sage for a wide swath of undergraduate applied topics.

—William Stein, University of Washington, Seattle

As the open-source and free competitor to expensive software like Maple™, Mathematica®, Magma, and MATLAB®, Sage offers anyone with access to a web browser the ability to use cutting-edge mathematical software and display his or her results for others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students toward the end of Calculus II (single-variable integral calculus) or higher-level course work such as Multivariate Calculus, Differential Equations, Linear Algebra, or Math Modeling.

The book assumes no background in computer science, but the reader who finishes the book will have learned about half of a first semester Computer Science I course, including large parts of the Python programming language. The audience of the book is not only math majors, but also physics, engineering, finance, statistics, chemistry, and computer science majors.

MBK/87

For additional information
and updates on this book, visit

www.ams.org/bookpages/mbk-87

AMS on the Web

www.ams.org

Contents

Preface: How to Use This Book	xv
Acknowledgements	xix
Chapter 1. Welcome to Sage!	1
1.1. Using Sage as a Calculator	1
1.2. Using Sage with Common Functions	3
1.3. Using Sage for Trigonometry	7
1.4. Using Sage to Graph 2-Dimensionally	9
1.4.1. Controlling the Viewing Window of a Plot	11
1.4.2. Superimposing Multiple Graphs in One Plot	15
1.5. Matrices and Sage, Part 1	19
1.5.1. A First Taste of Matrices	19
1.5.2. Complications in Converting Linear Systems	20
1.5.3. Doing the RREF in Sage	22
1.5.4. Basic Summary	24
1.5.5. The Identity Matrix	25
1.5.6. A Challenge to Practice by Yourself	25
1.5.7. Vandermonde's Matrix	26
1.5.8. The Semi-Rare Cases	28
1.6. Making Your Own Functions in Sage	30
1.7. Using Sage to Manipulate Polynomials	34
1.8. Using Sage to Solve Problems Symbolically	37
1.8.1. Solving Single-Variable Formulas	37
1.8.2. Solving Multivariable Formulas	38
1.8.3. Linear Systems of Equations	39
1.8.4. Non-Linear Systems of Equations	40
1.8.5. Advanced Cases	43
1.9. Using Sage as a Numerical Solver	44
1.10. Getting Help When You Need It	47
1.11. Using Sage to Take Derivatives	49
1.11.1. Plotting $f(x)$ and $f'(x)$ Together	50

1.11.2. Higher-Order Derivatives	50
1.12. Using Sage to Calculate Integrals	51
1.13. Sharing the Results of Your Work	60
Chapter 2. Fun Projects Using Sage	63
2.1. Microeconomics: Computing a Selling Price	64
2.2. Biology: Clogged Arteries and Poiseuille's Law	69
2.3. Industrial Optimization: Shipping Taconite	72
2.4. Chemistry: Balancing Reactions with Matrices	73
2.4.1. Background	74
2.4.2. Five Cool Examples	75
2.4.3. The Slow Way: Deriving the Method	75
2.4.4. Balancing the Quick Way	77
2.5. Physics: Ballistic Projectiles	79
2.5.1. Our First Example of Ballistic Trajectories	80
2.5.2. Our Second Example of Ballistic Trajectories	82
2.5.3. Counter-Battery Fire	83
2.5.4. Your Challenge: A Multi-Stage Rocket	84
2.6. Cryptology: Pollard's $p - 1$ Attack on RSA	85
2.6.1. Background: B -Smooth Numbers and $B!$	86
2.6.2. The Theory behind the Attack	87
2.6.3. Computing $2^{(B!)} \bmod N$	88
2.6.4. Your Challenge: Make All This Happen in Sage	90
2.6.5. Safeguards against Pollard's Factorial Attack	90
2.7. Mini-Project on Electric Field Vector Plots	91
Chapter 3. Advanced Plotting Techniques	93
3.1. Annotating Graphs for Clarity	93
3.1.1. Labeling the Axes of Graphs	93
3.1.2. Grids and Graphing Calculator-Style Graphs	95
3.1.3. Adding Arrows and Text to Label Features	96
3.1.4. Graphing an Integral	97
3.1.5. Dotted and Dashed Lines	98
3.2. Graphs of Some Hyperactive Functions	99
3.3. Polar Plotting	100
3.3.1. Examples of Polar Graphs	102
3.3.2. Problems That Can Occasionally Happen	102
3.4. Graphing an Implicit Function	104
3.5. Contour Plots and Level Sets	106
3.5.1. An Application to Thermodynamics	109
3.5.2. Application to Microeconomics (Cobb-Douglas Equations)	112
3.6. Parametric 2D Plotting	114
3.7. Vector Field Plots	116
3.7.1. Gradients and Vector Field Plots	117
3.7.2. An Application from Physics	118

3.7.3. Gradients versus Contour Plot	121
3.8. Log-Log Plots	122
3.9. Rare Situations	124
Chapter 4. Advanced Features of Sage	129
4.1. Using Sage with Multivariable Functions and Equations	129
4.2. Working with Large Formulas in Sage	131
4.2.1. Personal Finance: Mortgages	131
4.2.2. Physics: Gravitation and Satellites	134
4.3. Derivatives and Gradients in Multivariate Calculus	136
4.3.1. Partial Derivatives	136
4.3.2. Gradients	137
4.4. Matrices and Sage, Part 2	137
4.4.1. Defining Some Examples	137
4.4.2. Matrix Multiplication and Exponentiation	138
4.4.3. Right and Left System Solving	139
4.4.4. Matrix Inverses	141
4.4.5. Computing the Kernel of a Matrix	143
4.4.6. Determinants	145
4.5. Vector Operations	146
4.6. Working with the Integers and Number Theory	147
4.6.1. The gcd and the lcm	147
4.6.2. More about Prime Numbers	149
4.6.3. About Euler's Phi Function	149
4.6.4. The Divisors of a Number	151
4.6.5. Another Meaning for tau	153
4.6.6. Modular Arithmetic	154
4.6.7. Further Reading in Number Theory	155
4.7. Some Minor Commands of Sage	155
4.7.1. Rounding, Floors, and Ceilings	155
4.7.2. Combinations and Permutations	155
4.7.3. The Hyperbolic Trigonometric Functions	157
4.8. Calculating Limits Expressly	158
4.9. Scatter Plots in Sage	159
4.10. Making Your Own Regressions in Sage	163
4.11. Computing in Octal? Binary? And Hexadecimal?	165
4.12. Can Sage Do Sudoku?	165
4.13. Measuring the Speed of Sage	166
4.14. Huge Numbers and Sage	167
4.15. Using Sage and L ^A T _E X	168
4.16. Matrices and Sage, Part 3	169
4.16.1. Introduction to Eigenvectors	169
4.16.2. Finding Eigenvalues Efficiently in Sage	171
4.16.3. Matrix Factorizations	172
4.16.4. Solving Linear Systems Approximately with Least Squares	173

4.17. Computing Taylor or MacLaurin Polynomials	175
4.17.1. Examples of Taylor Polynomials	176
4.17.2. An Application: Understanding How g Changes	177
4.18. Minimizations and Lagrange Multipliers	179
4.18.1. Unconstrained Optimization	179
4.18.2. Constrained Optimization by Lagrange Multipliers	181
4.18.3. A Lagrange Multipliers Example in Sage	181
4.18.4. Some Applied Problems	183
4.19. Infinite Sums and Series	184
4.19.1. Verifying Summation Identities	185
4.19.2. The Geometric Series	186
4.19.3. Using Sage to Guide a Summation Proof	187
4.20. Continued Fractions in Sage	188
4.21. Systems of Inequalities and Linear Programming	189
4.21.1. A Simple Example	190
4.21.2. Convenient Features in Practice	192
4.21.3. The Polyhedron of a 3-Variable Linear Program	194
4.21.4. Integer Linear Programs and Boolean Variables	194
4.21.5. Further Reading on Linear Programming	195
4.22. Differential Equations	195
4.22.1. Some Easy Examples	196
4.22.2. An Initial-Value Problem	198
4.22.3. Graphing a Slope Field	199
4.22.4. The Torpedo Problem: Working with Parameters	201
4.23. Laplace Transforms	203
4.23.1. Transforming from $f(t)$ to $L(s)$	203
4.23.2. Computing the Laplace Transform “the Long Way”	204
4.23.3. Transforming from $L(s)$ to $f(t)$	205
4.24. Vector Calculus in Sage	206
4.24.1. Notation for Vector-Valued Functions	206
4.24.2. Computing the Hessian Matrix	207
4.24.3. Computing the Laplacian	208
4.24.4. The Jacobian Matrix	209
4.24.5. The Divergence	210
4.24.6. Verifying an Old Identity	211
4.24.7. The Curl of a Vector-Valued Function	212
4.24.8. A Challenge: Verifying Some Curl Identities	216
4.24.9. Multiple Integrals	216
Chapter 5. Programming in Sage and Python	219
5.1. Repetition without Boredom: The For Loop	220
5.1.1. Using Sage to Generate Tables	220
5.1.2. Carefully Formatting the Output	221
5.1.3. Arbitrary Lists	222
5.1.4. Loops with Accumulators	223

5.1.5. Using Sage to Find a Limit, Numerically	224
5.1.6. For Loops and Taylor Polynomials	226
5.1.7. If You Already Know How to Program...	227
5.2. Writing Subroutines	228
5.2.1. An Example: Working with Coinage	228
5.2.2. A Challenge: A Cash Register	230
5.2.3. An Example: Designing Aquariums	231
5.2.4. A Challenge: A Cylindrical Silo	233
5.2.5. Combining Loops and Subroutines	233
5.2.6. Another Challenge: Totaling a Sequence	234
5.3. Loops and Newton's Method	235
5.3.1. What Is Newton's Method?	235
5.3.2. Newton's Method with a For Loop	238
5.3.3. Testing the Code	239
5.3.4. Numerical versus Exact Representations	241
5.3.5. Working with Optional and Mandatory Parameters	242
5.3.6. Returning a Value and Nesting Subroutines	244
5.3.7. A Challenge: Finding a Point of Agreement	246
5.3.8. A Challenge: Finding Parallel Tangent Lines	246
5.3.9. A Challenge: Halley's Method	248
5.4. An Introduction to Control Flow	249
5.4.1. Verbosity Control	249
5.4.2. Theoretical Interlude: When Newton's Method Goes Crazy	251
5.4.3. Stopping Newton's Method Early	254
5.4.4. The List of Comparators	257
5.4.5. A Challenge: How Many Primes Are Less Than x ?	257
5.5. More Concepts in Flow Control	258
5.5.1. Raising an "Exception"	258
5.5.2. The If-Then-Else Construct	260
5.5.3. Easy Challenge: Registrar's End of Semester Run, Part 1	262
5.5.4. A Harder Challenge: Registrar's End of Semester Run, Part 2	262
5.6. While Loops versus For Loops	263
5.6.1. A Question about Factorials	263
5.6.2. A Challenge: Finding the Next Prime Number	264
5.6.3. Newton's Method with a While Loop	264
5.6.4. The Impact of Repeated Roots	265
5.6.5. Factorization by Trial Division	267
5.6.6. A Mini-Challenge: Trial Division, Stopping Early	268
5.6.7. A Challenge: An Upgraded Cash Register	269
5.7. How Arrays and Lists Work	270
5.7.1. Lists of Points and Plotting	270
5.7.2. A Challenge: Making the Plot Command	272
5.7.3. Operations on Lists	272
5.7.4. Looping through an Array	274

5.7.5. A Challenge: A Company Profit Report	275
5.7.6. Averaging Some Numbers	276
5.7.7. Mini-Challenge: Averaging, Both with and without Dropping	277
5.7.8. Mini-Challenge: Doubling Counting the Highest Quiz	277
5.7.9. A Challenge: Registrar's End of Semester Run, Part 3	277
5.7.10. A Utility: Returning Only Real, Rational, or Integer Roots	278
5.8. Where Do You Go from Here?	279
5.8.1. Further Resources on Python Programming	279
5.8.2. What Has Been Left Out?	280
Chapter 6. Building Interactive Webpages with Sage	285
6.1. The Six-Stage Process for Building Interacts	286
6.2. The Tangent-Line Interact	287
Stage 0: Develop a Concept	287
Stage 1: Design a Sage Subroutine	288
Stage 2: Polish This Subroutine	290
Stage 3: Convert to an Interactive Subroutine	291
Stage 4: Insert into a Web Template	292
Stage 5: Flesh-Out the Webpage	295
6.3. A Challenge to the Reader	295
6.4. The Optimal Aquarium Interact	295
6.5. Selectors and Checkboxes	296
6.6. The Definite Integral Interact	297
Appendix A. What to Do When Frustrated!	299
Appendix B. Transitioning to SageMathCloud	305
B.1. What Is SageMathCloud?	305
B.2. Getting Started in SageMathCloud	306
B.3. Other Cloud Features	307
Appendix C. Other Resources for Sage	309
Appendix D. Linear Systems with Infinitely Many Solutions	313
D.1. The Opening Example	313
D.2. Another Example	316
D.3. Exploring Deeper	318
D.3.1. An Interesting Re-Examination of Unique Solutions	318
D.3.2. Two Equations and Four Unknowns	319
D.3.3. Two Equations and Four Unknowns, but No Solutions	319
D.3.4. Four Equations and Three Unknowns	320
D.4. Misconceptions	320
D.5. Formal Definitions of REF and RREF	321
D.6. Alternative Notation	322
D.7. Geometric Interpretations in Three Dimensions	322

CONTENTS

xiii

D.7.1. Visualization of These Cases	323
D.7.2. Geometric Interpretations in Higher Dimensions	324
D.8. Dummy-Variable Notation	324
D.9. Solutions to Challenges	325
Appendix E. Installing Sage on Your Personal Computer	327
Appendix F. Index of Commands by Section and by Name	331
List of References	351