Can a Christian escape from a lion? How quickly can a rumour spread? Can you fool an airline into accepting oversize baggage? Recreational mathematics is full of frivolous questions in which the mathematician's art can be brought to bear. But play often has a purpose, whether it's bear cubs in mock fights, or war games. In mathematics, it can sharpen skills, or provide amusement, or simply surprise, and collections of problems have been the stock-in-trade of mathematicians for centuries. Two of the twentieth century's greatest players of problem posing and solving, Erdös and Littlewood, are the inspiration for this collection, which is designed to be sipped from, rather than consumed, in one sitting. The questions themselves range in difficulty: the most challenging offer a glimpse of deep results that engage mathematicians today; even the easiest are capable of prompting readers to think about mathematics. All come with solutions, many with hints, and most with illustrations. Whether you are an expert, or a beginner, or an amateur, this book will delight for a lifetime.

BÉLA BOLLOBÁS is a Senior Research Fellow at Trinity College, Cambridge and holds the Jabie Hardin Chair of Excellence in Combinatorics at the University of Memphis. He has held visiting positions from Seattle to Singapore, from Brazil to Zurich. This is his tenth book.

Cover illustration: by Gabriella Bollobás

CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

Contents

	Preface		xiii
1	The Pro	blems	1
2	The Hin	ıts	37
3	The Solo	utions	46
Ē	1.	The Lion and The Christian	46
	2.	Integer Sequences: Erdős Problems for Epsilons	49
	3.	Points on a Circle	51
	4.	Partitions into Closed Sets	53
	5.	Triangles and Squares	54
	6.	Polygons and Rectangles	56
	7.	African Rally	57
	8.	Fixing Convex Domains	59
	9.	Nested Subsets	62
	10.	Almost Disjoint Subsets	64
	11.	Loaded Dice	65
	12.	An Unexpected Inequality	66
	13.	Colouring Lines: the Erdős-Selfridge Theorem	67
	14.	Independent Sets	69
	15.	Expansion into Sums 2 ⁱ 3 ^j	70
	16.	A Tennis Match	71
	17.	A Triangle Inequality: Another Erdős Problem for Epsilons	72
	18.	Planar Domains of Diameter 1	74
	19.	Orienting Graphs	75
	20.	A Simple Clock	76
	21.	Neighbours in a Matrix	77
	22.	Separately Continuous Functions	78
	23.	Boundary Cubes	79
	24.	Lozenge Tilings	80

viii Contents

25.	A Continuum Independent Set	84
26.	Separating Families of Sets	85
27.	Bipartite Covers of Complete Graphs	87
28.	Convexity and Intersecting Simplices: the Theorems	
	of Radon and Carathéodory	89
29.	Intersecting Convex Sets: Helly's Theorem	91
30.	Judicious Partitions of Points	93
31.	Further Lozenge Tilings	94
32.	Two Squares in a Square	96
33.	Lines Through Points: the Sylvester-Gallai Theorem	99
34.	The Spread of Infection on a Square Grid	105
35.	The Spread of Infection in a d-dimensional Box	107
36.	Sums of Integers: an Easy Erdős Problem for Epsilons	111
37.	Normal Numbers: the Champernowne Number	112
38.	Random Walks on Graphs	114
39.	Simple Tilings of Rectangles	115
40.	L-tilings	117
41.	Antipodal Points and Maps: Borsuk's Theorem	118
42.	Bodies of Diameter 1: Borsuk's Problem	121
43.	Equilateral Triangles: Napoleon's Theorem	125
44.	Trisectors of Angles: Morley's Theorem	127
45.	Connected Subgraphs	130
46.	Subtrees of an Infinite Tree	134
47.	Two-distance Sets	135
48.	Gossiping Dons	137
49.	Exact Covers: the de Bruijn-Erdős Theorem	141
50.	Constant Intersections: an Extension of the	
	de Bruijn-Erdős Theorem	143
51.	Bell Numbers	145
52.	Circles Touching a Square	148
53.	Gambling	150
54.	Complex Sequences	152
55.	Partitions of Integers	154
56.	Emptying Glasses	158
57.	Distances in Planar Sets	160
58.	Monic Polynomials	162
59.	Odd Clubs	164
60.	A Politically Correct Town	165
61.	Lattice Paths	166
62.	Triangulations of Polygons	169

Contents ix

63.	A Converse of Cauchy's Inequality: Zagier's Inequality	170
64.	Squares Touching a Square	171
65.	Infection with Three Neighbours	172
66.	The Spread of Infection on a Torus	174
67.	Dominating Sequences	175
68.	Sums of Reciprocals	176
69.	Absent-minded Passengers	177
70.	Airline Luggage	178
71.	Intersecting Sets: the Erdős-Ko-Rado Theorem	180
72.	Sperner Families: the MYBL Inequality	181
73.	Breaking a Stick	184
74.	Triads	185
75.	Colouring Complete Graphs	187
76.	Symmetric Convex Domains: a Theorem of Besicovitch	188
77.	Independent Random Variables	191
78.	Triangles Touching a Triangle	193
79.	Even and Odd Graphs	194
80.	Packing Squares: the Moon–Moser Theorem	195
81.	Filling a Matrix	198
82.	An Inequality Concerning Triangles: the Erdős-Mordell	
	Theorem	200
83.	Perfect Difference Sets	204
84.	Difference Bases	206
85.	Satisfied Cricketers: the Hardy-Littlewood Maximal	
	Theorem	209
86.	Random Words	213
87.	Crossing a Chess Board	215
88.	Powers of Paths and Cycles	217
89.	Powers of Oriented Cycles	218
90.	Perfect Trees	219
91.	Circular Sequences	221
92.	Infinite Sets with Integral Distances	223
93.	Finite Sets with Integral Distances	224
94.	Cube-free Words: Thue's Theorem	225
95.	Square-free Words: the Thue-Morse Theorem	227
96.	Addition of Residue Classes: the Cauchy-Davenport	
	Theorem	230
97.	Sums Congruent to Zero: the Erdős-Ginzburg-Ziv	
	Theorem	233
98	Subwords of Distinct Words	238

x Contents

99.	Prime Factors of Sums	239
100.	Catalan Numbers	241
101.	Permutations without Long Decreasing Subsequences	243
102.	Random Intervals: a Theorem of Justicz, Scheinerman	
	and Winkler	245
103.	Sums of Convex Bodies: the Brunn-Minkowski Inequality	247
104.	Cross-Intersecting Families: Bollobás's Lemma	249
105.	Saturated Hypergraphs	253
106.	The Norm of Averages: Hardy's Inequality	254
107.	The Average of Geometric Means: Carleman's Inequality	258
108.	Triangulating Squares	260
109.	Strongly Separating Families	263
110.	Strongly Separating Systems of Pairs of Sets	264
111.	The Maximum Edge-Boundary of a Down-set	266
112.	Partitioning a Subset of the Cube	268
113.	Weakly Cross-intersecting Pairs: Frankl's Theorem	270
114.	Even Sets with Even Intersections	272
115.	Sets with Even Intersections	274
116.	Even Clubs	276
117.	Covering the Sphere	277
118.	The Kneser Graph: Lovász's Theorem	278
119.	Partitions into Bricks	280
120.	Drawing Dense Graphs	281
121.	Unit Distances: Székely's Theorem	283
122.	Point-Line Incidences	285
123.	Geometric Graphs without Parallel Edges	286
124.	Shortest Tours	289
125.	Density of Integers	292
126.	Black and White Sheep: Kirchberger's Theorem	294
127.	Chords of Convex Bodies	295
128.	Neighourly Polyhedra	297
129.	Neighbourly Simplices: Perles' Theorem	300
130.	The Rank of a Matrix	302
131.	Modular Intersecting k-uniform Set Systems: a Theorem	
	of Frankl and Wilson	304
132.	Families without Orthogonal Vectors	307
133.	A Counterexample to Borsuk's Conjecture:	
	the Kahn-Kalai Theorem	309
134.	Periodic Sequences	312
135.	Periodic Words: the Fine-Wilf Theorem	314

Contents	Xi

136.	Points on a Hemisphere: Wendel's Theorem	316
137.	Planar and Spherical Triangles	319
138.	Hobnails: Hadžiivanov's Theorem	320
139.	A Probabilistic Inequality	322
140.	Cube Slicing	323
141.	Measures on [0, 1]: the Hobby-Rice Theorem	325
142.	Cutting a Necklace	327
143.	The Norm of an Operator: the Riesz-Thorin Interpolation	
	Theorem	329
144.	Uniform Covers	333
145.	Projections of Bodies	334
146.	BTBT: the Box Theorem of Bollobás and Thomason	336
147.	Intersecting Uniform Set Systems: the Ray-Chaudhuri-	
	Wilson Inequality	338
148.	Intersecting Set Systems: the Frankl-Wilson Inequality	341
149.	Maps from S ⁿ	343
150.	Closed Covers of S ⁿ : Hopf's Theorem	345
151.	Spherical Pairs	346
152.	Realizing Distances	347
153.	A Closed Cover of S ²	349
154.	A Friendly Party: the Friendship Theorem of Erdős, Rényi	
	and Sós	350
155.	Polarities in Projective Planes	353
156.	Permutations of Vectors: Steinitz's Theorem	354
157.	An American Story	357
158.	Conway's Angel and Devil Game	359
159.	The Point-Line Game	367