This is a book on symplectic topology, a rapidly developing field of mathematics which originated as a geometric tool for problems of classical mechanics. Since the 1980s, powerful methods such as Gromov's pseudo-holomorphic curves and Morse-Floer theory on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present book focuses on function spaces associated with a symplectic manifold. A number of recent advances show that these spaces exhibit intriguing properties and structures, giving rise to an alternative intuition and new tools in symplectic topology. The book provides an essentially self-contained introduction into these developments along with applications to symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian dynamics and quantum mechanics. It will appeal to researchers and students from the graduate level onwards.

I like the spirit of this book. It formulates concepts clearly and explains the relationship between them. The subject matter is important and interesting.

—Dusa McDuff, Barnard College, Columbia University

This is a very important book, coming at the right moment. The book is a remarkable mix of introductory chapters and research topics at the very forefront of actual research. It is full of cross fertilizations of different theories, and will be useful to Ph.D. students and researchers in symplectic geometry as well as to many researchers in other fields (geometric group theory, functional analysis, mathematical quantum mechanics). It is also perfectly suited for a Ph.D.-students seminar.

-Felix Schlenk, Université de Neuchâtel

For additional information and updates on this book, visit www.ams.org/bookpages/crmm-34

AMS on the Web www.ams.org

Contents

Preface	ix
Chapter 1. Three Wonders of Symplectic Geometry	1
1.1. First wonder: C^0 -rigidity	1
1.2. Second wonder: Arnold's conjecture	2
1.3. Third wonder: Hofer's metric	6
1.4. The universal cover $\widetilde{\mathrm{Ham}}(M,\omega)$	13
1.5. More examples: Kähler manifolds	14
1.6. J-holomorphic curves	16
1.7. Marsden-Weinstein reduction	17
Chapter 2. C^0 -Rigidity of the Poisson Bracket	21
2.1. Rigidity of the Poisson bracket	21
2.2. Rigidity of symplectomorphisms	29
2.3. Higher Poisson brackets	33
Chapter 3. Quasi-morphisms	35
3.1. Homomorphisms up to a bounded error	35
3.2. Quasi-morphisms and irreversible dynamics	37
3.3. The Poincaré rotation number	39
3.4. The Maslov quasi-morphism	40
3.5. Quasi-morphisms and invariant pseudo-norms	45
Chapter 4. Subadditive Spectral Invariants	
4.1. The Calabi homomorphism	49
4.2. The action spectrum	50
4.3. Subadditive spectral invariants	53
4.4. Spectral width of a subset	57
4.5. Partial symplectic quasi-states	58
4.6. The Poisson bracket inequality	59
4.7. Two classes of subadditive spectral invariants	61
4.8. Calabi quasi-morphism	62
Chapter 5. Symplectic Quasi-states and Quasi-measures	65
5.1. Symplectic quasi-states	65
5.2. Quasi-states and the quantum-classical correspondence	68
5.3. Topological quasi-states	69
5.4. Quasi-measures	72

5.5. Reduction of symplectic quasi-states	82
5.6. Lie quasi-states	86
Chapter 6. Applications of Partial Symplectic Quasi-states	89
6.1. Symplectic intersections	89
6.2. Lagrangian knots	94
6.3. Applications to Hofer's geometry	97
Chapter 7. A Poisson Bracket Invariant of Quadruples	103
7.1. An invariant of quadruples	103
7.2. Basic properties of pb ₄	105
7.3. pb ₄ and symplectic quasi-states	105
7.4. A dynamical interpretation of pb ₄	107
7.5. pb ₄ and deformations of the symplectic form	
Chapter 8. Symplectic Approximation Theory	119
8.1. The profile function	119
8.2. Behavior at zero	121
8.3. A lower bound via symplectic quasi-states	122
8.4. A lower bound via pb ₄	123
Chapter 9. Geometry of Covers and Quantum Noise	127
9.1. Prelude: covers vs. packings in symplectic topology	127
9.2. A Poisson bracket invariant of covers	128
9.3. The Berezin–Toeplitz quantization	129
9.4. Operational quantum mechanics	131
9.5. Classical and quantum registration procedures	141
9.6. Geometry of overlaps and pb ₄	143
Chapter 10. Preliminaries from Morse Theory	147
10.1. Spectral numbers of functions	147
10.2. Morse homology	150
10.3. Canonical morphisms	154
10.4. Ring structure	156
10.5. Morse–Novikov homology	158
Chapter 11. An Overview of Floer Theory	161
11.1. Spherically monotone symplectic manifolds	
11.2. The least action principle	162
11.3. The Floer equation	163
11.4. The dimension of moduli spaces	165
11.5. Compactness breaking mechanism	167
11.6. The Floer complex	169
11.7. Ring structure	171
Chapter 12. Constructing Subadditive Spectral Invariants	173
12.1. Quantum homology	173

	CONTENTS	vii
12.2.	The Frobenius structure	176
12.3.	Non-Archimedean geometry of QH	177
12.4.	The PSS isomorphism	178
12.5.	Spectral invariants in Floer theory	178
12.6.	Subadditive spectral invariants revisited	180
Bibliography		185
Notation Index		193
Subject Index		197
Name Index		201