Over the last several decades, mathematical models have become central to the study of social evolution, both in biology and the social sciences. But students in these disciplines often lack the tools to understand them. A primer on behavioral modeling that includes both mathematics and evolutionary theory, *Mathematical Models of Social Evolution* aims to make the student and professional researcher in biology and the social sciences conversant in the language of the field.

Teaching biological concepts from which models can be developed, Richard McElreath and Robert Boyd introduce readers to many of the typical mathematical tools that are used to analyze evolutionary models and end each chapter with a set of problems that draw upon these techniques. *Mathematical Models of Social Evolution* equips behaviorists and evolutionary biologists with the mathematical knowledge to truly understand the models on which their research depends. Ultimately, McElreath and Boyd's goal is to impart the fundamental concepts that underlie modern biological understandings of the evolution of behavior so that readers will be able to more fully appreciate journal articles and scientific literature, and start building models of their own.

"Evolutionary arguments are increasingly used as explanations in a wide range of human sciences—psychology, economics, anthropology—as well as in biology itself. However, these arguments are frequently employed on the basis of a second-hand understanding of the principles by which they are derived. This is the first book to provide a thorough but accessible grounding in the methods underlying the major topics in the evolution of social behavior. It should become required study for graduate students in evolution and human behavior."

DANIEL NETTLE, NEWCASTLE UNIVERSITY

RICHARD Mcelreath is associate professor of anthropology at the University of California, Davis. ROBERT BOYD is professor of anthropology at the University of California, Los Angeles, and coauthor of *Not by Genes Alone*, also published by the University of Chicago Press.

THE UNIVERSITY OF CHICAGO PRESS WWW.PRESS.UCHICAGO.EDU

VER ILLUSINATION AND DESIGN: MICHAEL BREN

Contents

Preface				
1	The	eoretician's Laboratory	1	
	1.1	The structure of evolutionary theory	3	
	1.2	The utility of simple models	4	
	1.3	Why not just simulate?	8	
	1.4	A model of viability selection	11	
	1.5	Determining long-term consequences	16	
	1.6	Nongenetic replication	27	
2	Animal Conflict			
	2.1	The Hawk-Dove game	38	
	2.2	Retaliation	46	
	2.3	Continuous stable strategies	52	
	2.4	Ownership, an asymmetry	55	
	2.5	Resource holding power	58	
	2.6	Sequential play	60	
3	Altruism & Inclusive Fitness			
	3.1	The prisoner's dilemma	72	
	3.2	Positive assortment	76	
	3.3	Common descent and inclusive		
		fitness	78	
	3.4	Rediscovering Hamilton's rule	82	
	3.5	Justifying Hamilton's rule	97	
	3.6	Using Hamilton's rule	99	

4	Rec	iprocity 1	23
	4.1	The Axelrod-Hamilton model	124
	4.2	Mutants and mistakes	132
	4.3	Partner choice	145
	4.4	Indirect reciprocity	150
	4.5	Reciprocity and collective action	156
5	Ani	mal Communication 1	73
	5.1	Costly signaling theory	174
	5.2	Cheap, honest signals	192
	5.3	Signaling and altruism	201
	5.4	Social learning	206
6	Sele	ection among Groups 2	223
	6.1	Three views of selection	225
	6.2	Deriving the Price equation	228
	6.3	Selection within and between groups	232
	6.4	Dispersal	249
7	Sex	Allocation	261
	7.1	Fisher's theory of sex allocation	
	7.2	Reproductive value and Fisherian sex ratios	
	7.3	Using the Shaw-Mohler theorem	
	7.4	Biased sex ratios	271
	7.5	Breaking the eigen barrier	281
8	Sex	cual Selection	295
	8.1	Quantitative genetic models	
	8.2	Fisher's runaway process	305
	8.3	Costly choice and sensory bias	309
	8.4	Good genes and sexy sons	313
A	ppen	ndixes	333
	A	Facts about Derivatives	
	В	Facts about Random Variables	
	C	Calculating Binomial Expectations	
	D	Numerical Solution of the Kokko et al. Model	
	E	Solutions to Problems	340

CONTENTS vii Bibliography 393 Index 409