Complexity and Cryptography An Introduction

Cryptography plays a crucial role in many aspects of today's world, from internet banking and e-commerce to e-mail and web-based business processes. Understanding the principles on which it is based is an important topic that requires a knowledge of both computational complexity and a range of topics in pure mathematics. This book provides that knowledge, combining an informal style with rigorous proofs of the key results to give an accessible introduction. It comes with plenty of examples and exercises (many with hints and solutions), and is based on a highly successful course developed and taught over many years to undergraduate and graduate students in mathematics and computer science.

The opening chapters are a basic introduction to the theory of algorithms: fundamental topics such as NP-completeness, Cook's theorem, the P vs NP question, probabilistic computation and primality testing give a taste of the beauty and diversity of the subject. After briefly considering symmetric cryptography and perfect secrecy, the authors introduce public key cryptosystems. The mathematics required to explain how these work and why or why not they might be secure is presented as and when required, though appendices contain supplementary material to fill any gaps in the reader's background. Standard topics, such as the RSA and E1Gamal cryptosystems, are treated. More recent ideas, such as probabilistic cryptosystems (and the pseudorandom generators on which they are based), digital signatures, key establishment and identification schemes are also covered.

JOHN TALBOT is a Royal Society University Research Fellow and Lecturer of Mathematics at University College, London.

DOMINIC WELSH is Professor of Mathematics and Fellow of Merton College, Oxford

Contents

Preface

page ix

Nota	tion		xi
1	Basi	cs of cryptography	- 1
	1.1	Cryptographic models	2
	1.2	A basic scenario: cryptosystems	3
	1.3	Classical cryptography	7
	1.4	Modern cryptography	8
2	Com	plexity theory	10
	2.1	What is complexity theory?	10
	2.2	Deterministic Turing machines	16
	2.3	Decision problems and languages	22
	2.4	Complexity of functions	30
	2.5	Space complexity	33
3	Non	-deterministic computation	39
	3.1	Non-deterministic polynomial time – NP	39
	3.2	Polynomial time reductions	43
	3.3	NP-completeness	45
	3.4	Turing reductions and NP-hardness	54
	3.5	Complements of languages in NP	56
	3.6	Containments between complexity classes	60
	3.7	NP revisited – non-deterministic Turing machines	62
4	Prol	babilistic computation	67
	4.1	Can tossing coins help?	67
	4.2	Probabilistic Turing machines and RP	71

vi Contents

	4.3	Primality testing	74
	4.4	Zero-error probabilistic polynomial time	80
	4.5	Bounded-error probabilistic polynomial time	81
	4.6	Non-uniform polynomial time	83
	4.7	Circuits	86
	4.8	Probabilistic circuits	92
	4.9	The circuit complexity of most functions	93
	4.10	Hardness results	94
5	Sym	metric cryptosystems	99
	5.1	Introduction	99
	5.2	The one time pad: Vernam's cryptosystem	101
	5.3	Perfect secrecy	102
	5.4	Linear shift-register sequences	106
	5.5	Linear complexity	111
	5.6	Non-linear combination generators	113
	5.7	Block ciphers and DES	115
	5.8	Rijndael and the AES	118
	5.9	The Pohlig-Hellman cryptosystem	119
6	One	way functions	125
	6.1	In search of a definition	125
	6.2	Strong one-way functions	129
	6.3	One way functions and complexity theory	132
	6.4	Weak one-way functions	135
7	Publ	ic key cryptography	141
	7.1	Non-secret encryption	141
	7.2	The Cocks–Ellis non-secret cryptosystem	142
	7.3	The RSA cryptosystem	145
	7.4	The Elgamal public key cryptosystem	147
	7.5	Public key cryptosystems as trapdoor functions	150
	7.6	Insecurities in RSA	153
	7.7	Finding the RSA private key and factoring	155
	7.8	Rabin's public key cryptosystem	158
	7.9	Public key systems based on NP-hard problems	161
	7.10	Problems with trapdoor systems	164
8	Digi	tal signatures	170
	8.1	Introduction	170
	8.2	Public key-based signature schemes	171

Contents	vii
----------	-----

	8.3	Attacks and security of signature	& zibnaqqA
	0.4	schemes	172
	8.4	Signatures with privacy	176
	8.5	The importance of hashing	178
	8.6	The birthday attack	180
9	100	establishment protocols	187
	9.1	The basic problems	187
	9.2	Key distribution with secure channels	188
	9.3	Diffie-Hellman key establishment	190
	9.4	Authenticated key distribution	193
	9.5	Secret sharing	196
	9.6	Shamir's secret sharing scheme	197
10	Secu	re encryption	203
	10.1	Introduction	203
	10.2	Pseudorandom generators	204
	10.3	Hard and easy bits of one-way functions	207
	10.4	Pseudorandom generators from hard-core	
		predicates	211
	10.5	Probabilistic encryption	216
	10.6	Efficient probabilistic encryption	221
11	Iden	tification schemes	229
	11.1	Introduction	229
	11.2	Interactive proofs	231
	11.3	Zero knowledge	235
	11.4	Perfect zero-knowledge proofs	236
	11.5	Computational zero knowledge	240
	11.6	The Fiat-Shamir identification scheme	246
App	endix	1 Basic mathematical background	250
	A1.1	Order notation	250
	A1.2	Inequalities	250
App	endix	2 Graph theory definitions	252
Ann	endix	3 Algebra and number theory	253
-PP	A3.1		253
	A3.2		253
	A3.3		254
	11.07.500.55		-0.

viii Contents

Appendix 4	Probability theory	257
Appendix 5	Hints to selected exercises and problems	26
Appendix 6	Answers to selected exercises and problems	268
Bibliography Index		278