Engineering Geology for Tomorrow's Cities

Edited by

M. G. Culshaw, H. J. Reeves, I. Jefferson & T. W. Spink

This book and the accompanying CD-ROM provide a statement of our knowledge and understanding of engineering geology as applied to the urban environment at the start of the 21st century. In particular, this volume demonstrates that:

- working standards originally developed nationally are becoming internationalized;
- risk assessment, rather than just assessment of hazards, is driving decision-making;
- geo-environmental change, whether climatically or anthropogenically driven, is becoming better understood;
- · greater use of underground space is being made;
- the relentless advance of information technology is providing new opportunities for engineering geologists to interpret and visualize the subsurface.

This book shows that in developed and developing countries alike, engineering geolgists are increasingly exchanging ideas and learning from each other in a genuine two-way process. These ideas will contribute significantly to the sustainable development of both new and long-established urban environments world-wide.

Visit our online bookshop: http://www.geolsoc.org.uk/bookshop

Geological Society web site: http://www.geolsoc.org.uk

Cover illustration:

The cartoon depiction of some of Dubai's iconic buildings shows that, no matter what building or construction is envisaged, the complexity of the ground must be investigated and understood to ensure safe and efficient urban development. (Image credit: T. W. Spink).

Contents

Foreword	vii
Preface	ix
Acknowledgements	xi
Introduction	
BELL, F. G., CULSHAW, M. G., FORSTER, A. & NATHANAIL, C. P. The engineering geology of the Nottingham area, UK	1
Geology of Megacities and Urban Areas	
DE MULDER, E. & PEREIRA, J. J. Earth Science for the city	25
MARKER, B. R. Geology of megacities and urban areas	33
Legacy of the Past and Future Climate Change	
REES, J. G., GIBSON, A. D., HARRISON, M., HUGHES, A. & WALSBY, J. C. Regional modelling of geohazard change	49
NATHANAIL, J. & BANKS, V. Climate change: implications for engineering geology practice	65
Urban Landslides	
PETLEY, D. N. On the impact of urban landslides	83
Planning and Geohazards	
MORA, S. Disasters are not natural: risk management, a tool for development	101
GIBSON, A. D. & CHOWDHURY, R. Planning and geohazards	113
Urban Site Investigation	
CLAYTON, C. R. I. Urban site investigation	125
GREEN, J. A. & HELLINGS, J. Developments in urban site investigation	143
Dereliction, Pollution and Contaminated Land	
NATHANAIL, C. P. The role of engineering geology in risk-based land contamination management for tomorrow's cities	149
SCOTT, D. I. & HATHEWAY, A. W. The management of derelict, polluted and contaminated land	159
Environmental Urban Geotechnics	
JEFFERSON, I. & BRAITHWAITE, P. Environmental urban geotechnics	167
Substructures and Underground Space	
ROGERS, C. D. F. Substructures, underground space and sustainable urban environments	177
HUNT, D. & CHAPMAN, D. Substructures and underground space	189
Geodata for the Urban Environment	
HACK, R. Advances in the use of geodata for the urban environment	201

REEVES, H. J. & WEST, T. R. Geodata for the urban environment	209
Infrastructure for the City and its Region	
VIGGIANI, G. M. B. & DE SANCTIS, L. Geotechnical aspects of underground railway construction in the urban environment: the examples of Rome and Naples	215
SHARPE, L. & ALLENBY, D. Challenges for regional infrastructure: acceptable risk, prioritization of repair and vulnerability reduction	241
Resources for the City	
SCHOUENBORG, B., TANG, L. & ÅKESSON, U. Resources for the city: sustainable use of bedrock resources for concrete production with examples from Sweden	257
CRIPPS, J. C. Resources for the city	265
The Future of Engineering Geology	
TEPEL, R. E. The core attributes of engineering geology: a US perspective	273
GRIFFITHS, J. S. Engineering geology core values: a UK perspective	277
INOUE, D., OSHIMA, H., JSEG RESEARCH PLANNING COMMITTEE & JSEG INTERNATIONAL COMMITTEE. A perspective on the future of engineering geology in the world, Asia and Japan	281
BOCK, H. Core values, competences and issues in engineering geology: a European perspective	287
BAYNES, F. J., GRIFFITHS, J. S. & ROSENBAUM, M. S. The future of engineering geology	297
Index	303