This radical revision of Professor Bullen's acclaimed and widely used text provides an introduction to modern seismological theory, with emphasis on both the physical models and the mathematical descriptions of earthquakes and their sources.

The essential core of the earlier editions has been retained. particularly the tensor treatment of elasticity, seismic wave travel-time analysis and density in the Earth, although these parts of the text have been brought up to date and expanded. The new part of the book reflects on how the study of earthquakes, seismic waves and seismic risk has been broadened in the past two decades. Thus, this edition includes introductory theory of earthquake sources, seismic wave travel through complex geological zones and viscous and anisotropic media, vibrations of the whole Earth, strong-motion seismology and earthquake prediction and risk. There is an emphasis on statistical and numerical procedures and problems of resolution in inverse theory. Modern class exercises are to be found throughout.

The book assumes some background in classical physics and mathematics, including simple differential equations, linear algebra and probability theory. It will be suitable for use in undergraduate courses in geophysics, applied mechanics and geotechnology and for graduate courses in seismology and earthquake engineering. In addition, it will serve as a reference text on seismological problems for professionals concerned with earthquakes, Earth structure and wave motion.

Cover design: James Butler

CAMBRIDGE UNIVERSITY PRESS

Contents

	Pre	face		XV		
1	The	The scope of seismology				
	1.1	Early	history	1		
	1.2	Deve	lopments from 1915 to 1960	4		
			period since 1960	6		
		1.3.1	Seismology and nuclear explosions	6		
		1.3.2	Standard global recording	7		
		1.3.3	Computers and complexity	9		
		1.3.4	Extra-terrestrial seismology	10		
	1.4	The p	plan of this book	13		
2	Ela	sticity	theory	15		
	2.1	Anal	ysis of stress	15		
		2.1.1	The stress tensor	16		
		2.1.2	Symmetry of the stress tensor	18		
		2.1.3	Use of the Kronecker delta δ_{ij} and alternating tensor ε_{ijk}	19		
			The stress quadric	20		
		2.1.5	Elastodynamic equations of motion	21		
	2.2	Infini	itesimal strain	21		
		2.2.1	The rotation tensor	23		
		2.2.2	The strain tensor	23		
		2.2.3	Cubical dilatation	25		
		2.2.4	The equation of conservation	26		
	2.3		ilinear coordinates	27		
	2.4	Perfe	ct elasticity	28		
		2.4.1	Stress-strain relations for a perfectly elastic isotropic			
			material	28		
		2.4.2	Equations of motion in terms of displacement	30		
			Some perfectly elastic substances	31		
			Young's modulus and Poisson's ratio	32		
			Energy in a perfectly elastic body	33		
			Theorems on elastic equilibrium	36		

	2.4.7 Solving problems in elasticity	38
	2.5 Non-isotropic materials and transverse isotropy	39
	2.6 Departures from perfect elasticity due to time effects	40
	2.6.1 Fluid viscosity	41
	2.6.2 Kelvin-Voigt model	42
	2.6.3 Elastic afterworking	43
	2.6.4 Maxwell model	44
	2.6.5 Strength of a solid	45
	2.6.6 Solids and fluids	46
	2.7 Finite-strain theory	47
	2.8 Exercises	48
2	Vibrations and waves	51
3		51
	3.1 Vibrations of systems with one degree of freedom	51
	3.1.1 Simple harmonic motion	51
	3.1.2 Damped vibrations 3.1.3 Forced vibrations	53
	3.1.4 The delta function	54
	3.1.5 Green's function	55
	3.2 Vibrations of systems with more than one degree of fr 3.2.1 Eigen-vibrations of systems with finite freedom	58
	3.2.2 Rayleigh's principle	60
	3.2.3 Particles on an elastic string	60
	3.2.4 Vibrations of continuous systems	61
	3.2.5 Seismological considerations	63
	3.3 Plane waves	64
	3.3.1 Fourier's integral theorem and spectra	65
	3.3.2 Simple harmonic plane wave	66
	3.3.3 Vector waves. Polarisation	67
	3.3.4 Standing waves	69
	3.3.5 Dispersion of waves	69
	3.3.6 Energy in plane wave motion	72
	3.3.7 Propagation of plane waves in a general direction	
	3.4 The wave equation	73
	3.4.1 Case of spherical symmetry	74
	3.4.2 General solution	74
	3.4.3 Ray theory	75
	3.5 Two-dimensional wave motion	76
	3.6 Scattering	79
	3.7 Diffraction	80
	3.8 Helmholtz and Sturm-Liouville equations	82
	3.9 Exercises	84
	and to progress which is the country of the	
4	Body elastic waves	87
	4.1 P and S waves	87

Contents	VII
Contents	VII

		4.1.1 Case of plane waves	88
		4.1.2 Poisson's relation	89
	4.2	Inclusion of the seismic source in infinite media	89
		4.2.1 Spherical source	89
		4.2.2 Green's function representation for point sources	91
		4.2.3 Reciprocity theorem	92
	4.3	Form of ground motion in an earthquake	93
	4.4	The effect of gravity fluctuations	96
	4.5	The effects of elastic imperfections	97
		4.5.1 Constitutive laws for anelasticity	97
		4.5.2 Linear models and the Jeffreys power law	99
		4.5.3 Damping of harmonic waves. The quality factor Q	101
	4.6	Thermodynamical conditions	102
	4.7	Finite-strain effects	103
	4.8	Case of spherical waves	104
	4.9	Exercises	106
5	Cur	face elastic waves and eigen-vibrations of a sphere	108
)		Waves guided along a plane boundary	108
		Rayleigh waves	111
		Stoneley waves	113
		Love waves	114
	3.7	5.4.1 Nodal planes	116
		5.4.2 Dispersion curves	116
		5.4.3 The differential equation for continuously varying media	117
	55	Surface waves in the presence of multiple layers and sources	118
	3.3	5.5.1 Rayleigh waves for a single surface layer	118
		5.5.2 Matrix theory. Love and Rayleigh waves	121
		5.5.3 Lamb's problem	124
	5.6	Normal oscillations of an elastic sphere	126
		5.6.1 The basic equations	126
		5.6.2 Torsional (toroidal) modes	128
		5.6.3 Spheroidal and radial modes	129
		5.6.4 Geometrical description of the oscillations	130
		5.6.5 Effects of rotation and ellipticity. Terrestrial spec-	
		troscopy	132
		5.6.6 Duality with travelling waves	133
	5.7	Seismic waves in linear visco-elastic media	134
		5.7.1 Equation of motion. The correspondence principle	134
		5.7.2 Damped seismic waves	135
		5.7.3 Damped oscillations of a visco-elastic sphere	136
	5.8	Exercises	13
	D.C	land and a facility of the discount	
5		lection and refraction of elastic waves	140
	0.1	Formulation	140

		6.1.1 Laws of reflection and refraction	140
		6.1.2 General equations for the two media	14
	6.2	Special cases	142
		6.2.1 Case of incident SH waves	142
		6.2.2 P wave incident against a free plane boundary	144
		6.2.3 SV wave incident against a free plane boundary	145
	6.3	Curved boundaries and head waves	140
	6.4	Refraction of dispersed waves	14
	6.5	Scattered seismic waves. Matrix theory	148
	6.6	Exercises	15
7	Seis	smic rays in a spherically stratified Earth model	153
	7.1	The parameter p of a seismic ray	153
		7.1.1 Rays in inhomogeneous media. The eikonal equation	154
	7.2	Relations between p , Δ , T for a given family of rays	156
		7.2.1 The relation $p = dT/d\Delta$	156
		7.2.2 Some integral expressions for T , Δ	157
		7.2.3 The functions ξ and ζ	159
		7.2.4 Expressions for $d\Delta/dp$ and dT/dp	159
	7.3	Relations between Δ and T , corresponding to assigned	
		variations of v with r	160
		7.3.1-7.3.9 Various cases	160
	7.4	Derivation of P and S velocity distributions from (T, Δ) relations	165
		7.4.1 Herglotz-Wiechert-Bateman inversion	166
		7.4.2 Bullen's method	167
		7.4.3 Linear inverse method	168
		7.4.4 Inversion for low velocity layers	170
		7.4.5 The tau (τ) method	171
	7.5	Special velocity distributions	173
		7.5.1 Curvature of a seismic ray	173
		7.5.2 Rays in a homogeneous medium	174
		7.5.3 Circular rays; the law $v = a - br^2$	174
		7.5.4 Mohorovičić's law $v = ar^b$	175
	7.6	Theory of travel-times in near earthquakes	175
		7.6.1 Special form of the (T, Δ) relation for near earthquakes	175
		7.6.2 Application to a layered crustal structure	176
		7.6.3 Error, resolution and network design	178
		7.6.4 Determination of layer thicknesses	178
		7.6.5 Use of artificial sources. Seismic prospecting	180
	7.7	Exercises	182
8	Am	plitudes of the surface motion due to seismic waves in a	

spherically stratified Earth model

185

Contents	ix
Contents	IA.

	8.1	Energy considerations	100
		8.1.1 Energy per unit area of wave front in an emerging wave	185
		8.1.2 Relation between energy and amplitude	187
	8.2	Movements of the surface due to an incident wave	188
	8.3	Amplitude as a function of Δ	189
	8.4	Loss of energy during transmission through the medium	191
		8.4.1 Gradual variation in properties	191
		8.4.2 Single discontinuity	192
	8.5	Waves which change type	194
	8.6	Amplitudes corresponding to cusps in (T, Δ) curves	194
		Amplitudes of surface seismic waves	195
	8.8	Reflectivity algorithms	196
	8.9	Exercises	199
9	Seis	smometry	201
	9.1	The horizontal component seismograph	202
		9.1.1 Effect of tilt	203
	9.2	The vertical component seismograph	204
	9.3	The indicator equation	205
	9.4	Damping of seismographs	206
	9.5	Solution of the indicator equation	207
		9.5.1 Simple harmonic ground motion	207
		9.5.2 Impulsive ground motion	208
		9.5.3 General ground motion response curves	209
	9.6	Computation of the ground motion from a seismogram	211
	9.7	Displacement and velocity meters and accelerometers	211
		9.7.1 Recording methods and timing	212
	9.8	The dynamic ranges of seismic ground motion	214
		9.8.1 Microseisms	214
		9.8.2 Frequency range	216
		9.8.3 Amplitude range	217
	9.9	Modern seismographs	217
		9.9.1 The electromagnetic type	218
		9.9.2 Signal enhancement. Digital processing	219
		9.9.3 Strong-motion accelerometers and arrays	221
		9.9.4 Strain, tilt and other measurements	224
		9.9.5 Portable seismographs and microprocessors. Tel-	224
		emetry	224
		9.9.6 Ocean-bottom seismographs	226
		0 Engineering response spectra	226
	9.1	1 Exercises	228
10		nstruction of travel-time tables	231
	10.	1 Parameters of earthquake location	231

	10.2	Calculation of the epicentral distance and azimuth	231
	10.3	Features of seismograms	232
	10.4	Estimation of P travel-time tables	234
		10.4.1 Equations of condition between hypocentre and	
		table parameters. Geiger's and Inglada's methods	234
		10.4.2 Application of least-squares theory and inverse	
		theory	236
		10.4.3 Jeffreys' method of successive approximation.	
		Summary values	238
		10.4.4 Uniform reduction and robust estimation	243
		10.4.5 Regional variations and focal depths	245
	10.5	Use of digital computers. Tomography	248
	10.6	Travel-time tables other than P	249
		10.6.1 Notation used for phases read on seismograms	250
		10.6.2 Relations between different travel-time tables	252
		10.6.3 Types of travel-time tables for body waves	253
	10.7	Effect of the Earth's ellipticity	254
	10.8	Travel-times of surface waves	257
	10.9	Numerical results	257
		10.9.1 The Jeffreys-Bullen seismological tables	257
		10.9.2 Tables for PKP	260
		10.9.3 Ellipticity tables	261
		10.9.4 Statistical treatment of velocity and travel-time table	
		estimation	263
	10.10	Exercises	265
11	The	seismological observatory	267
		Inside the observatory	267
		11.1.1 Interpretation of seismograms	269
		11.1.2 Determination of hypocentres and earthquake size	272
		11.1.3 Group estimation of earthquake parameters	273
		11.1.4 Abnormal observations. The <i>T</i> -phase. Precursors	274
	11.2	International seismological organisations	275
		11.2.1 International seismological catalogues	276
		11.2.2 Global digital networks	277
	11.3	Exercises	279
			• • • • •
12		nic waves in anomalous structures	281
	12.1	Anisotropic media	281
		12.1.1 Equation of motion and determinantal conditions	281
		12.1.2 Surface waves in anisotropic media	283
		Heterogeneous media. WKBJ approximation	284
	12.3	Topographic and structural variations	286
		12.3.1 Finite difference methods	287

Contents xi

		12.3.2 Finite element methods	288
		12.3.3 Numerical results. A mountain and oceanic-	
		continental transition	295
		12.3.4 Variational methods	302
	12.4	Laboratory model seismology	305
	12.5	Exercises	306
13	Seism	nic waves and planetary interiors	310
		Major discontinuities within the Earth	310
		13.1.1 Existence of a crust. Oceanic and continental struc-	
		tures tures	310
		13.1.2 Existence of a central core	312
		13.1.3 Discontinuities in the mantle	314
		13.1.4 Discontinuities in the central core	315
		13.1.5 Division of the Earth's interior into shells	317
	13.2	P and S velocity distributions in the Earth and Moon	318
		13.2.1 The crust	318
		13.2.2 The lithosphere	320
		13.2.3 The deep interior. Recent solutions	321
		13.2.4 The lunar interior	324
	13.3	The states of the Earth's mantle and core	325
		13.3.1 Solidity and fluidity	325
		13.3.2 Anelastic properties	327
	13.4	The Earth's density variation	328
		13.4.1 Early models of density variation	329
		13.4.2 Equations for density gradient from seismology	329
		13.4.3 Extension to inhomogeneous layers. The index η	331
	13.5	The inverse problem of density determination	332
		13.5.1 Bullen's procedure	332
		13.5.2 Bullen's compressibility-pressure hypothesis	334
		13.5.3 Linear inversion. Tradeoff curves	335
		13.5.4 Direct use of seismic waves	339
	13.6	Stratification of the shells	343
		13.6.1 The upper mantle	343
		13.6.2 The shell D"	344
		13.6.3 The outer core (shell E)	345
		13.6.4 The shell F	346
		13.6.5 The inner core (shell G)	347
		Ellipticities of surfaces of equal density within the Earth	348
	13.8	Exercises	348
14	Lon	g-period oscillations and the Earth's interior	350
		Historical background	350
	142	Numerical results for Earth models	352

		14.2.1	Torsional oscillations	352
		14.2.2	Spheroidal oscillations	35:
		14.2.3	Modal splitting. The solotone effect	357
	14.3	Estima	ation of observed eigen-spectra	363
		14.3.1	Fourier analysis	363
		14.3.2	Complex demodulation	364
		14.3.3	Calculation of eigen-frequency, amplitude, phase	
			and Q	366
		14.3.4	Observations	367
15	Eart	hquake	statistics and prediction	37
	15.1	Energy	y released in earthquakes	371
		15.1.1	Case of near earthquakes	372
		15.1.2	Assumption of spherical symmetry about the source	372
		15.1.3	Use of surface waves	374
	15.2	Eartho	quake magnitude	375
		15.2.1	Magnitude and energy	37
		15.2.2	Magnitude - frequency of occurrence relation	37
	15.3	Seismi	city	379
		15.3.1	Geography of shallow earthquakes	379
		15.3.2	Distribution of deep-focus earthquakes	38
		15.3.3	Tectonic associations	383
		15.3.4	Reservoir-induced earthquakes	384
	15.4	Foresh	nocks and aftershocks	386
		15.4.1	Aftershocks	386
		15.4.2	Foreshocks	387
			Swarms	387
	15.5		quake prediction	388
			Prediction theory	388
			Periodicities and correlations. Seismicity patterns	389
			Changes in seismic velocities	39
			Changes in strain	39:
			Dilatancy model	39:
		15.5.6	Other field parameters. Liquefaction	394
	15.6	Exercis	ses	396
16	The	earthqu	uake source	398
	16.1	Elastic	c rebound model	398
		16.1.1	Causes of earthquakes	398
		16.1.2	Strain energy before an earthquake	400
		16.1.3	Faults and fracture	402
		16.1.4	Double couple model	405
	16.2	Source	e mechanism estimation	406
		1621	Method of fault-plane solutions	106

Contents	XIII
Contents	

		16.2.2	Probability model for group fault-plane solutions	411
	16.3	Movin	g dislocation source	415
			Kinematics and dynamics. Near field and far field	415
		16.3.2	Radiation patterns and directivity	419
		16.3.3	Synthetic seismograms	423
	16.4	Seismi	c moment	424
		16.4.1	Moment tensor	425
		16.4.2	Estimation of seismic moments	426
	16.5	Exerci	ses	428
17	Stro	ng-moti	ion seismology	432
	17.1	Effects	of earthquakes	432
	17.2	Macro	seismic data	433
		17.2.1	Intensity of earthquake effects	433
		17.2.2	Isoseismal curves and acceleration	435
		17.2.3	Fault rupture correlations	437
	17.3	Near-f	ield parameters	438
	17.4	Record	ded strong ground motion	439
		17.4.1	Peak ground accelerations, velocity and displace-	
			ment	439
			Duration of shaking	443
			Spectral characteristics	444
		17.4.4	Local effects. Soil layers and upthrow	446
		17.4.5	Attenuation	449
	17.5	Array	analysis	451
	17.6	Seismi	c risk	455
			Statistical theory. Poisson and hazard distributions	455
		17.6.2	Probability of exceedence of ground motions	456
		17.6.3	Seismic expectancy maps	460
		17.6.4	Design of earthquake-resistant structures	462
	17.7	Tsuna	mis, seiches, and atmospheric oscillations	464
	17.8	Exerci	ses ———————————————————————————————————	468
	App	endix:	Reference velocities and elastic parameters in two Ear	
	m	odels		470
	Sele	cted bil	bliography	474
	Refe	rences		478
	Uni	t conve	rsion table	488
	Inde	ex		489