
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Photo courtesy of Bob Paz, Caltech

Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Painlevé smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuschian differential equations, asymptotic methods (including Euler's method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuschian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.

AMS on the Web www.ams.org

Contents

Preface to	the Series	IX
Preface to	Part 2	xv
Chapter 12. Riemannian Metrics and Complex Analysis		3.61 1
§12.1.	Conformal Metrics and Curvature	3
§12.2.	The Poincaré Metric	6
§12.3.	The Ahlfors–Schwarz Lemma	14
§12.4.	Robinson's Proof of Picard's Theorems	16
§12.5.	The Bergman Kernel and Metric	18
§12.6.	The Bergman Projection and Painlevé's Conformal Mapping Theorem	27
Chapter :	13. Some Topics in Analytic Number Theory	37
§13.1.	Jacobi's Two- and Four-Square Theorems	46
§13.2.	Dirichlet Series	56
§13.3.	The Riemann Zeta and Dirichlet L -Function	72
§13.4.	Dirichlet's Prime Progression Theorem	80
§13.5.	The Prime Number Theorem	87
Chapter	14. Ordinary Differential Equations in the Complex Domain	95
§14.1.	Monodromy and Linear ODEs	99
§14.1.	Monodromy in Punctured Disks	101
§14.2.	ODEs in Punctured Disks	106
314.0.	ODES III I diletated Disks	100

§14.4.	Hypergeometric Functions		116
§14.5.	Bessel and Airy Functions		139
§14.6.	Nonlinear ODEs: Some Remarks		150
§14.7.	Integral Representation		152
Chapter 15. Asymptotic Methods			161
§15.1.	Asymptotic Series	no.	163
§15.2.	Laplace's Method: Gaussian Approximation and Watson's Lemma		171
§15.3.	The Method of Stationary Phase		183
§15.4.	The Method of Steepest Descent		194
§15.5.	The WKB Approximation	:	213
Chapter 1	6. Univalent Functions and Loewner Evolution		231
§16.1.	Fundamentals of Univalent Function Theory	DI WOLF	233
§16.2.	Slit Domains and Loewner Evolution	Lange	241
§16.3.	SLE: A First Glimpse		251
Chapter 1	7. Nevanlinna Theory	8.81	257
§17.1.	The First Main Theorem of Nevanlinna Theory		262
§17.2.	Cartan's Identity	451	268
§17.3.	The Second Main Theorem and Its Consequences	3.0	271
§17.4.	Ahlfors' Proof of the SMT	112.0	278
Bibliography			285
Symbol In	ndex		309
Subject Index		P. S. C.	311
Author Index		5.61	315
Index of Capsule Biographies		181	321