A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

hoto courtesy of Bob Paz, Caltecl

Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy's view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors's function, the sheaf of analytic germs, and Jacobi, as well as Weierstrass, elliptic functions.

www.ams.org

Contents

Preface to	the Series	xi
Preface to	Part 2	xvii
Chapter 1.	Preliminaries	1
§1.1.	Notation and Terminology	1
§1.2.	Complex Numbers	3
§1.3.	Some Algebra, Mainly Linear	5
§1.4.	Calculus on \mathbb{R} and \mathbb{R}^n	8
§1.5.	Differentiable Manifolds	12
§1.6.	Riemann Metrics	18
§1.7.	Homotopy and Covering Spaces	21
§1.8.	Homology	24
§1.9.	Some Results from Real Analysis	26
Chapter 2.	The Cauchy Integral Theorem: Basics	29
§2.1.	Holomorphic Functions	30
§2.2.	Contour Integrals	40
§2.3.	Analytic Functions	49
§2.4.	The Goursat Argument	66
§2.5.	The CIT for Star-Shaped Regions	69
§2.6.	Holomorphically Simply Connected Regions, Logs, and Fractional Powers	71
§2.7.	The Cauchy Integral Formula for Disks and Annuli	76

vii

Ch	apter 3.	Consequences of the Cauchy Integral Formula	79
	§3.1.	Analyticity and Cauchy Estimates	80
	§3.2.	An Improved Cauchy Estimate	93
	§3.3.	The Argument Principle and Winding Numbers	95
	§3.4.	Local Behavior at Noncritical Points	104
	§3.5.	Local Behavior at Critical Points	108
	§3.6.	The Open Mapping and Maximum Principle	114
	§3.7.	Laurent Series	120
	§3.8.	The Classification of Isolated Singularities; Casorati–Weierstrass Theorem	124
	§3.9.	Meromorphic Functions	128
	§3.10.	Periodic Analytic Functions	132
Ch	apter 4.	Chains and the Ultimate Cauchy Integral Theorem	137
	§4.1.	Homologous Chains	139
	§4.2.	Dixon's Proof of the Ultimate CIT	142
	§4.3.	The Ultimate Argument Principle	143
	§4.4.	Mesh-Defined Chains	145
	§4.5.	Simply Connected and Multiply Connected Regions	150
	§4.6.	The Ultra Cauchy Integral Theorem and Formula	151
	§4.7.	Runge's Theorems	153
	§4.8.	The Jordan Curve Theorem for Smooth Jordan Curves	161
Ch	apter 5.	More Consequences of the CIT	167
	§5.1.	The Phragmén–Lindelöf Method	168
	§5.2.	The Three-Line Theorem and the Riesz-Thorin	
		Theorem	174
	§5.3.	Poisson Representations	177
	§5.4.	Harmonic Functions	183
	§5.5.	The Reflection Principle	189
	§5.6.	Reflection in Analytic Arcs; Continuity at Analytic Corners	196
	§5.7.	Calculation of Definite Integrals	201
Ch	apter 6.	Spaces of Analytic Functions	227
	§6.1.	Analytic Functions as a Fréchet Space	228
	§6.2.	Montel's and Vitali's Theorems	234

§6.3.	Restatement of Runge's Theorems	244
§6.4.	Hurwitz's Theorem	245
§6.5.	Bonus Section: Normal Convergence of Meromorphic Functions and Marty's Theorem	247
Chapter 7.	Fractional Linear Transformations	255
§7.1.	The Concept of a Riemann Surface	256
§7.2.	The Riemann Sphere as a Complex Projective Space	267
§7.3.	$\mathbb{PSL}(2,\mathbb{C})$	273
§7.4.	Self-Maps of the Disk	289
§7.5.	Bonus Section: Introduction to Continued Fractions and the Schur Algorithm	295
Chapter 8.	Conformal Maps	309
§8.1.	The Riemann Mapping Theorem	310
§8.2.	Boundary Behavior of Riemann Maps	319
§8.3.	First Construction of the Elliptic Modular Function	325
§8.4.	Some Explicit Conformal Maps	336
§8.5.	Bonus Section: Covering Map for General Regions	353
§8.6.	Doubly Connected Regions	357
§8.7.	Bonus Section: The Uniformization Theorem	362
§8.8.	Ahlfors' Function, Analytic Capacity and the Painlevé Problem	371
Chapter 9.	Zeros of Analytic Functions and Product Formulae	381
§9.1.	Infinite Products	383
§9.2.	A Warmup: The Euler Product Formula	387
§9.3.	The Mittag-Leffler Theorem	399
§9.4.	The Weierstrass Product Theorem	401
§9.5.	General Regions	406
§9.6.	The Gamma Function: Basics	410
§9.7.	The Euler–Maclaurin Series and Stirling's Approximation	430
§9.8.	Jensen's Formula	448
§9.9.	Blaschke Products	451
§9.10.	Entire Functions of Finite Order and the Hadamard Product Formula	459

Chapter 1	0. Elliptic Functions	475
§10.1.	A Warmup: Meromorphic Functions on $\widehat{\mathbb{C}}$	480
§10.2.	Lattices and $\mathbb{SL}(2,\mathbb{Z})$	481
§10.3.	Liouville's Theorems, Abel's Theorem, and Jacobi's	
	Construction	491
§10.4.	Weierstrass Elliptic Functions	501
§10.5.	Bonus Section: Jacobi Elliptic Functions	522
§10.6.	The Elliptic Modular Function	542
§10.7.	The Equivalence Problem for Complex Tori	552
Chapter 11. Selected Additional Topics		555
§11.1.	The Paley–Wiener Strategy	557
§11.2.	Global Analytic Functions	564
§11.3.	Picard's Theorem via the Elliptic Modular Function	570
§11.4.	Bonus Section: Zalcman's Lemma and Picard's Theorem	575
§11.5.	Two Results in Several Complex Variables:	0.0
	Hartogs' Theorem and a Theorem of Poincaré	580
§11.6.	Bonus Section: A First Glance at	
	Compact Riemann Surfaces	586
Bibliography		591
Symbol Index		623
Subject Index		625
Author Index		633
Index of Capsule Biographies		641