String Theory in a Nutshell

This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, *String Theory in a Nutshell* brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended "strings" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, including gravity.

Starting with the basic definitions of the theory, Elias Kiritsis guides readers through classic and modern topics. In particular, he treats perturbative string theory and its Conformal Field Theory (CFT) tools in detail while also developing nonperturbative aspects and exploring the unity of string interactions. He presents recent topics including black holes, their microscopic entropy, and the AdS/CFT correspondence. He also describes matrix model tools for string theory. In all, the book contains nearly five hundred exercises for the graduate-level student, and works as a self-contained and detailed guide to the literature.

String Theory in a Nutshell is the staple one-volume reference on the subject not only for students and researchers of theoretical high-energy physics, but also for mathematicians and physicists specializing in theoretical cosmology and QCD.

"There is a definite need for a short speedy intro-

duction to modern string theory. Kiritsis beautifully fills this gap—including all essential areas, but remaining relatively concise, so that a beginning student can work through the entire text."

—Andrew Strominger, Harvard University

"An excellent reference for any graduate student interested in string theory. Kiritsis succinctly describes many of the recent developments that are necessary background to current research. Topics covered include black holes in string theory, holography, various dualities among string theories, and dualities connecting string theory to gauge theories. The basic frameworks for connecting string theory to four-dimensional physics are also explained."

—Juan Maldacena, Institute for Advanced Study

"This very well-written book, which builds on the fundamentals and provides an excellent introduction to the state of the art in string theory, will be quite useful to students and to researchers acquainting themselves with this exciting field. It concisely lays out the successes of string theory to date and the challenges that await. I have no doubt that the topics described herein will remain at the heart of the theory even when our understanding of its dynamics and its role in describing nature improve."

—David Kutasov, University of Chicago

Elias Kiritsis is Directeur de Recherche at the CNRS, affiliated with the École Polytechnique in Paris, and Professor of Physics at the University of Crete.

What's In a Nutshell? More of the best science than ever. In a Nutshell is a new series of concise, accessible, and up-to-date textbooks for advanced undergraduates and graduate students on key subjects in the physical sciences. Part of Princeton University Press's expanding presence in science textbook publishing, this high-profile series will bring out the highest quality texts on subjects ranging from astrophysics, nuclear physics, and string theory to particle physics, neutrino physics, electromagnetism, and magnetism. Crack open one of this season's new titles to find out just how much science fits In a Nutshell.

PRINCETON UNIVERSITY PRESS

Printed in the U.S.A.

Contents

	Preface	xv
	Abbreviations	xvii
1	Introduction	1
	1.1 Prehistory	1
	1.2 The Case for String Theory	3
	1.3 A Stringy Historical Perspective	6
	1.4 Conventions	8
	Bibliography	9
2	Classical String Theory	10
	2.1 The Point Particle	10
	2.2 Relativistic Strings	14
	2.3 Oscillator Expansions	20
	2.3.1 Closed strings	20
	2.3.2 Open strings	22
	2.3.3 The Virasoro constraints	24
	Bibliography	26
	Exercises	26
3	Quantization of Bosonic Strings	28
	3.1 Covariant Canonical Quantization	28
	3.2 Light-cone Quantization	31
	3.3 Spectrum of the Bosonic String	32
	3.4 Unoriented Strings	33
	3.4.1 Open strings and Chan-Paton factors	34
	3.5 Path Integral Quantization	37

viii | Contents

	3.6 Topologically Nontrivial World-sheets		39
	3.7 BRST Primer		40
	3.8 BRST in String Theory and the Physical Spectrum		42
	Bibliography		46
2	Exercises		46
4	Conformal Field Theory		49
	4.1 Conformal Transformations		49
	4.1.1 The case of two dimensions		51
	4.2 Conformally Invariant Field Theory		52
	4.3 Radial Quantization		54
	4.4 Mode Expansions		57
	4.5 The Virasoro Algebra and the Central Charge		58
	4.6 The Hilbert Space		59
	4.7 The Free Boson		60
	4.8 The Free Fermion		63
	4.9 The Conformal Anomaly		64
	4.10 Representations of the Conformal Algebra		66
	4.11 Affine Current Algebras		69
	4.12 Free Fermions and O(N) Affine Symmetry		71
	4.13 Superconformal Symmetry		77
	4.13.1 $\mathcal{N}=(1.0)_2$ superconformal symmetry		77
	4.13.2 $\mathcal{N}=(2,0)_2$ superconformal symmetry		79
	4.13.3 $\mathcal{N}=(4,0)_2$ superconformal symmetry		81
	4.14 Scalars with Background Charge		82
	4.15 The CFT of Ghosts		84
	4.16 CFT on the Disk		86
		and the	86
	4.16.2 Free massless fermions on the disk	Samuel A.	88
	4.16.3 The projective plane		90
	4.17 CFT on the Torus		90
	4.18 Compact Scalars		93
	4.18.1 Modular invariance		97
	4.18.2 Decompactification		97
	4.18.3 The torus propagator		97
	4.18.4 Marginal deformations		98
	4.18.5 Multiple compact scalars		98
	4.18.6 Enhanced symmetry and the string Brout-Englert-Higgs effect		100
	4.18.7 T-duality		101
	4.19 Free Fermions on the Torus		103
	4.20 Bosonization		105
	4.20.1 "Bosonization" of bosonic ghost system		100
	4.21 Orbifolds		107

		Contents ix
	4.22 CFT on Other Surfaces of Euler Number Zero	112
	4.23 CFT on Higher-genus Riemann Surfaces	116
	Bibliography	117
	Exercises	118
	Entitions	
5	Scattering Amplitudes and Vertex Operators	126
	5.1 Physical Vertex Operators	128
	5.2 Calculation of Tree-level Tachyon Amplitudes	130
	5.2.1 The closed string	130
	5.2.2 The open string	131
	5.3 The One-loop Vacuum Amplitudes	133
	5.3.1 The torus	134
	5.3.2 The cylinder	136
	5.3.3 The Klein bottle	138
	5.3.4 The Möbius strip	138
100	5.3.5 Tadpole cancellation	139
	5.3.6 UV structure and UV-IR correspondence	140
	Bibliography	141
	Exercises	142
6	Strings in Background Fields	144
	6.1 The Nonlinear σ -model Approach	144
	6.2 The Quest for Conformal Invariance	147
	6.3 Linear Dilaton and Strings in $D < 26$ Dimensions	149
	6.4 T-duality in Nontrivial Backgrounds	151
	Bibliography	151
	Exercises	152
7	Superstrings and Supersymmetry	155
انا	$7.1 \mathcal{N} = (1, 1)_2$ World-sheet Superconformal Symmetry	155
	7.2 Closed (Type-II) Superstrings	157
	7.2.1 Massless R-R states	159
	7.3 Type-I Superstrings	162
	7.4 Heterotic Superstrings	165
	7.5 Superstring Vertex Operators	168
	7.6 One-loop Superstring Vacuum Amplitudes	170
	7.6.1 The type-IIA/B superstring	170
	7.6.2 The heterotic superstring	171
	7.6.3 The type-I superstring	171
	7.7 Closed Superstrings and T-duality	174
	7.7.1 The type-II string theories	174
	7.7.2 The heterotic string	175
	7.8 Supersymmetric Effective Actions	175

x | Contents

	7.9 Anomalies		176
	Bibliography		182
	Exercises		183
8	D-branes		187
	8.1 Antisymmetric Tensors and p-branes		187
	8.2 Open Strings and T-duality		188
	8.3 D-branes		191
	8.4 D-branes and R-R Charges		193
	8.4.1 D-instantons		196
	8.5 D-brane Effective Actions		197
	8.5.1 The Dirac-Born-Infeld action		197
	8.5.2 Anomaly-related terms		199
	8.6 Multiple Branes and Nonabelian Symmetry		200
	8.7 T-duality and Orientifolds		201
	8.8 D-branes as Supergravity Solitons		205
	8.8.1 The supergravity solutions		205
	8.8.2 Horizons and singularities		207
	8.8.3 The extremal branes and their near-horizon geometry		208
	8.9 NS ₅ -branes		211
	Bibliography		213
	Exercises		213
9	Compactifications and Supersymmetry Breaking		219
	9.1 Narain Compactifications		219
	9.2 World-sheet versus Space-time Supersymmetry		223
	9.2.1 $\mathcal{N}=1_4$ space-time supersymmetry	estatus i	225
	9.2.2 $\mathcal{N}=2$ 4 space-time supersymmetry	1	226
	9.3 Orbifold Reduction of Supersymmetry		228
	9.4 A Heterotic Orbifold with $\mathcal{N}=2_4$ Supersymmetry		231
	9.5 Spontaneous Supersymmetry Breaking	1000	235
	9.6 A Heterotic $\mathcal{N}=1_4$ Orbifold and Chirality in Four Dimensions		237
	9.7 Calabi-Yau Manifolds		239
	9.7.1 Holonomy		241
	9.7.2 Consequences of SU(3) holonomy		242
	9.7.3 The CY moduli space		243
	9.8 $\mathcal{N} = 1_4$ Heterotic Compactifications		245
	9.8.1 The low-energy $\mathcal{N}=1$ 4 heterotic spectrum		246
	9.9 K3 Compactification of the Type-II String		247
	$9.10 \ \mathcal{N} = 2_6 \ \text{Orbifolds of the Type-II String}$		250
	9.11 CY Compactifications of Type-II Strings		252
	9.12 Mirror Symmetry		253
	9.13 Absence of Continuous Global Symmetries		255

		Contents xi
	9.14 Orientifolds	256
	9.14.1 K3 orientifolds	257
	9.14.2 The Klein bottle amplitude	258
	9.14.3 <i>D-branes</i> on T^4/\mathbb{Z}_2	260
	9.14.4 The cylinder amplitude	263
	9.14.5 The Möbius strip amplitude	265
	9.14.6 Tadpole cancellation	266
	9.14.7 The open string spectrum	267
	9.15 D-branes at Orbifold Singularities	268
	9.16 Magnetized Compactifications and Intersecting Branes	271
	9.16.1 Open strings in an internal magnetic field	272
	9.16.2 Intersecting branes	277
	9.16.3 Intersecting D ₆ -branes	278
	9.17 Where is the Standard Model?	280
	9.17.1 The heterotic string	280
	9.17.2 Type-II string theory	282
	9.17.3 The type-I string	283
	9.18 Unification	284
	Bibliography	286
	Exercises	287
10	Loop Corrections to String Effective Couplings	294
	10.1 Calculation of Heterotic Gauge Thresholds	296
	10.2 On-shell Infrared Regularization	301
	10.2.1 Evaluation of the threshold	303
	10.3 Heterotic Gravitational Thresholds	304
	10.4 One-loop Fayet-Iliopoulos Terms	305
	$10.5 N = 1, 2_4$ Examples of Threshold Corrections	309
	10.6 $\mathcal{N} = 2_4$ Universality of Thresholds	312
	10.7 Unification Revisited	315
	Bibliography	317
	Exercises	317
11	Duality Connections and Nonperturbative Effects	320
Kin	11.1 Perturbative Connections	322
	11.2 BPS States and BPS Bounds	323
	11.3 Nonrenormalization Theorems and BPS-saturated Couplings	325
	11.4 Type-IIA versus M-theory	328
	11.5 Self-duality of the Type-IIB String	331
	11.6 U-duality of Type-II String Theory	334
	11.6.1 U-duality and bound states	336
	11.7 Heterotic/Type I Duality in Ten Dimensions	336
	11.7.1 The type-I D ₁ -string	339

xii | Contents

	11.7.2 The type-I D ₅ -brane	341
	11.7.3 Further consistency checks	343
	11.8 M-theory and the $E_8 \times E_8$ Heterotic String	344
	11.8.1 Unification at strong heterotic coupling	347
	11.9 Heterotic/Type II Duality in Six Dimensions	348
	11.9.1 Gauge symmetry enhancement and singular K3 surfaces	352
	11.9.2 Heterotic/type II duality in four dimensions	355
	11.10 Conifold Singularities and Conifold Transitions	356
	Bibliography	362
	Exercises	363
12	Black Holes and Entropy in String Theory	369
	12.1 A Brief History	369
	12.2 The Strategy	370
	12.3 Black-hole Thermodynamics	371
	12.3.1 The Euclidean continuation	372
	12.3.2 Hawking evaporation and greybody factors	374
	12.4 The Information Problem and the Holographic Hypothesis	375
	12.5 Five-dimensional Extremal Charged Black Holes	377
	12.6 Five-dimensional Nonextremal RN Black Holes	379
	12.7 The Near-horizon Region	381
	12.8 Semiclassical Derivation of the Hawking Rate	383
	12.9 The Microscopic Realization	386
	12.9.1 The world-volume theory of the bound state	387
	12.9.2 The low-energy SCFT of the D ₁ -D ₅ bound state	389
	12.9.3 Microscopic calculation of the entropy	391
	12.9.4 Microscopic derivation of Hawking evaporation rates	394
	12.10 Epilogue	396
	Bibliography	398
	Exercises	399
13	The Bulk/Boundary Correspondence	403
	13.1 Large-N Gauge Theories and String Theory	405
	13.2 The Decoupling Principle	408
	13.3 The Near-horizon Limit	409
	13.4 Elements of the Correspondence	410
	13.5 Bulk Fields and Boundary Operators	413
	13.6 Holography	416
	13.7 Testing the AdS ₅ /CFT ₄ Correspondence	417
	13.7.1 The chiral spectrum of $\mathcal{N}=4$ gauge theory	418
	13.7.2 Matching to the string theory spectrum	420
	13.7.3 $\mathcal{N}=8$ five-dimensional gauged supergravity	422
	13.7.4 Protected correlation functions and anomalies	422

	Contents xiii
13.8 Correlation Functions	424
13.8.1 Two-point functions	425
13.8.2 Three-point functions	427
13.8.3 The gravitational action and the conformal anomaly	428
13.9 Wilson Loops	433
13.10 AdS ₅ /CFT ₄ Correspondence at Finite Temperature	436
$13.10.1~\mathcal{N}=4$ super Yang-Mills theory at finite temperature	436
13.10.2 The near-horizon limit of black D ₃ -branes	438
13.10.3 Finite-volume and large-N phase transitions	440
13.10.4 Thermal holographic physics	443
13.10.5 Spatial Wilson loops in (a version of) QCD ₃	444
13.10.6 The glueball mass spectrum	446
13.11 AdS ₃ /CFT ₂ Correspondence	447
13.11.1 The greybody factors revisited	450
13.12 The Holographic Renormalization Group	450
13.12.1 Perturbations of the CFT ₄	451
13.12.2 Domain walls and flow equations	452
13.12.3 A RG flow preserving $\mathcal{N}=1$ supersymmetry	454
13.13 The Randall-Sundrum Geometry	456
13.13.1 An alternative to compactification	459
Bibliography	462
Exercises	463
4 String Theory and Matrix Models	470
14.1 M(atrix) Theory	471
14.1.1 Membrane quantization	471
14.1.2 Type-IIA D ₀ -branes and DLCQ	473
14.1.3 Gravitons and branes in M(atrix) theory	476
14.1.4 The two-graviton interaction from M(atrix) theory	477
14.2 Matrix Models and $D = 1$ Bosonic String Theory	479
14.2.1 The continuum limit	481
14.2.2 Solving the matrix model	482
14.2.3 The double-scaling limit	485
14.2.4 The free-fermion picture	487
14.3 Matrix Description of $D = 2$ String Theory	488
14.3.1 Matrix quantum mechanics and free fermions on the line	490
14.3.2 The continuum limit	492
14.3.3 The double-scaling limit	494
14.3.4 D-particles, tachyons, and holography	496
Bibliography	498
Exercises	498
Annualis A Two dimensional Complex Competers	503
ADDONALY A LIVE GIMENCIONAL COMPLEY L. COMPLEY	500

Appendix B	Differential Forms	505
Appendix C	Theta and Other Elliptic Functions	507
C.1 ϑ and Rela	ted Functions	507
C.2 The Weiers	strass Function	510
C.3 Modular Fo	orms	510
C.4 Poisson Re	esummation	512
Appendix D	Toroidal Lattice Sums	513
Appendix E	Toroidal Kaluza-Klein Reduction	516
Appendix F	The Reissner-Nordström Black Hole	519
Appendix G	Electric-magnetic Duality in $D = 4$	522
TO SOLD THE STATE OF THE STATE	Supersymmetric Actions in Ten	
and Eleven D		525
	1 ₁₁ Supergravity	520
H.2 Type-IIA S		527
H.3 Type-IIB S		528
	pergravities: The Democratic Formulation	529
$H.5 N = 1_{10} S$	upersymmetry	530
Appendix I Coupled to N	$\mathcal{N}=$ 1,2, Four-dimensional Supergravity Matter	533
$I.1 \mathcal{N} = 1_4 \text{ Sup}$	pergravity	533
$I.2 \mathcal{N} = 2_4 \text{ Sup}$	pergravity	535
Appendix J	BPS Multiplets in Four Dimensions	537
Appendix K	The Geometry of Anti-de Sitter Space	54:
	owski Signature AdS	54:
K.2 Euclidean		544
K.3 The Confo	rmal Structure of Flat Space	540
K.4 Fields in A	물리 경험을 제공하다 하는 사람들은 사람들이 되었다. 그 사람들은 사람들은 사람들은 사람들이 되었다.	548
K.4.1 The w	ave equation in Poincaré coordinates	549
	ulk-boundary propagator	550
	ulk-to-bulk propagator	55
Bibliography		55:
Index		57: