This textbook provides a basic understanding of the formative processes of igneous and metamorphic rocks through quantitative applications of simple physical and chemical principles. The book encourages a deeper comprehension of the subject by explaining the petrologic principles rather than simply presenting the student with petrologic facts and terminology. Assuming knowledge of only introductory college-level courses in physics, chemistry, and calculus, it lucidly outlines mathematical derivations fully and at an elementary level, and is ideal for intermediate and advanced courses in igneous and metamorphic petrology.

The end-of-chapter quantitative problem sets facilitate student learning by working through simple applications. They also introduce widely used thermodynamic software programs for calculating igneous and metamorphic phase equilibria, and image analysis software. With over 500 illustrations, this revised edition contains valuable new material on the structure of the Earth's mantle and core, the properties and behavior of magmas, recent results from satellite imaging, and more.

- Promotes a conceptual approach to petrology by focusing on principles rather than facts and memorization
- Builds an in-depth understanding of petrologic principles through a quantitative approach that is supported by instructive end-of-chapter problem sets
- Amply illustrated with over 350 figures, where all phase diagrams are accompanied by photomicrographs, thereby linking descriptive aspects of petrology with the fundamental principles governing the origin of rocks
- Supports student learning by beginning with simple principles of physics and chemistry
- Explains the use of popular thermodynamic software programs for calculating igneous and metamorphic phase equilibria and image analysis software

"It emphasizes principles rather than facts. The end-of-chapter problems for students are excellent." Tim Lutz, University of Pennsylvania, USA

"I am very pleased to see the quality of this text. It will definitely be the best undergraduate petrology text when it appears on the shelf. You have a winner." C. Page Chamberlain, Dartmouth College, USA

"The presentation is clear and concise, the illustrations extremely useful ... Of great utility are the problems at the end of each chapter ... This is a fantastic book." Steven R. Bohlen, President of Joint Oceanographic Institutions, USA

Designed by Phil Treble.

Cover illustration: photomicrographs of thin sections of related igneous and metamorphic rocks: (above) basalt showing an ophitic intergrowth of gray plagioclase in highly birefringent olivine and pyroxene under crossed-polarized light; (below) basalt's high-pressure, low-temperature metamorphic equivalent blueschist, consisting of blue glaucophane and clear garnet (lower right) and epidote (upper right and left) under plane-polarized light.

resources@ cambridge www.cambridge.org/philpotts

Online resources:

- Solutions for instructors
- Supporting figures and tables
- Electronic copies of all figures
- Color versions of 147 figures

Contents

.

	Prefa	ice	page xiii
i.	Ackn	owledgments	xvi
	List o	of units	xvii
	1	Introduction	1
	1.1	Petrology and its scope	- 1
	1.2	Major structural units of the Earth	2
	1.3	Pressure distribution within the Earth	4
	1.4	Temperature gradients and heat flow in the lithosphere	6
	1.5	Heat sources in the Earth	10
	1.6	Temperatures in the lithosphere: the steady-state geotherm	11
	1.7	General outline of the origin of igneous and metamorphic rocks	13
	1.8	Problems	17
	2	Physical properties of magma	19
	2.1	Introduction	19
	2.2	Magmatic temperatures	19
	2.3	Magma densities	21
	2.4	Magma viscosities	23
	2.5	Problems	26
	3	Intrusion of magma	20
	31	Introduction	28
	3.1	Buovant rise of magma	28
	33	Volume expansion on melting	20
	3.4	Vesiculation	32
	3.5	Tectonic pressure on magma	35
	3.6	Intrusion rates of Newtonian magma in laminar flow	35
	3.7	Flow rate of a Bingham magma	39
	3.8	Intrusion rates of turbulent magma	41
	3.9	Flow through a porous medium	41
	3.10	Channel flow	43
	3.11	Diapiric intrusion of magma	45
	3.12	Factors in source affecting the supply of magma	47
	3.13	Evidence of flow in rocks	48
	3.14	Problems	50
	1	Forms of igneous bodies	52
	4	Introduction	52
	T.I	nitoducion	52
	4.2	Flood basalts	52
	43	Central volcances	50
	4.4	Pyroclastic denosits and calderas	72
	Intra	sive hodies	75
	45	General statement	77
	4.6	Volcanic necks	80
	1.0	toreand notes	80

vii

4.7	Dikes and sills	80
4.8	Ring dikes, cone sheets, and caldron subsidence	86
4.9	Diatreme breccia pipes	89
4.10	Laccoliths	93
4.11	Lopoliths and layered intrusions	95
4.12	Stocks	99
4.13	Batholiths	101
4.14	Problems	108
5	Cooling of igneous bodies and other diffusion processes	111
5.1	Introduction	111
5.2	General theory of heat conduction	112
5.3	Heat conduction across a plane contact	113
5.4	Numerical analysis	117
5.5	Cooling by radiation	121
5.6	Diffusion	123
5.7	Problems	128
~		
6	Classification of igneous rocks	130
6.1	Introduction	130
6.2	Mode and norm	133
6.3	CIPW norm calculation	134
6.4	MELTS program and normative minerals	136
6.5	General classification terms	137
6.6	IUGS classification of plutonic igneous rocks	137
6.7	IUGS classification of volcanic and hypabyssal rocks	139
6.8	The Irvine–Baragar classification of volcanic rocks	143
6.9	Igneous rock names	146
6.10	Chemical discriminants of rock types	147
6.11	Problems	148
7	Introduction to the mandumention	
/	introduction to thermodynamics	149
7.1	Introduction	149
7.2	Energy in the form of heat and work	149
7.3	First law of thermodynamics	151
7.4	Standard heats of formation	152
7.5	Second law of thermodynamics	156
7.6	Entropy	157
7.7	Third law of thermodynamics and the measurement of entropy	158
7.8	Gibbs equation: thermodynamic potentials	159
7.9	Free energy of formation at any temperature and pressure	161
7.10	Problems	162
8	Free energy and phase equilibria	164
81	Introduction	164
82	Free energy surface in $G_{-}T_{-}P$ space	164
83	Plotting univariant lines in P_T diagrams	166
84	Schreinemakers rules for intersecting surfaces in $G-T-P$ space	168
85	Schreinemakers rules applied to multicomponent systems	170
86	Degenerate systems	176
87	Summary and conclusions	176
8.8	Problems	177
-	ALL Cornel Phones and	
9	Thermodynamics of solutions	179
9.1	Introduction	179
9.2	Conservative and nonconservative components of a solution	179
9.3	Free energy of solutions	180

c	
ontents	1X
contento	111

9.4	Free energy of ideal solutions	181
9.5	Free energy of nonideal solutions	184
9.6	Nonideal solution: the regular solution model	185
9.7	Unmixing of nonideal solutions: exsolution	187
9.8	Equilibrium constant of a reaction	189
9.9	Problems	193
10	Phase equilibria in igneous systems	194
10.1	Introduction	194
10.2	Two-component systems	194
10.3	Lever rule	197
10.4	Simple binary systems with no solid solution	197
10.5	Phase rule	200
10.6	Binary systems with binary compounds	201
10.7	Binary systems with liquid immiscibility	205
10.8	Complex binary systems with no solid solution	207
10.9	Binary systems with complete solid solution	208
10.10	Polymorphism in binary solid solutions	210
10.11	Binary systems exhibiting partial solid solution	211
10.12	Binary systems with liquidus passing through a minimum	212
10.13	Ternary systems	215
10.15	Simple ternary systems with congruently melting phases with	
10.11	no solid solution	218
10.15	Ternary systems with congruently melting binary phases	220
10.16	Ternary systems with an incongruent-melting binary phase	220
10.17	Ternary systems with liquid immiscibility	223
10.17	Ternary systems with one binary solid solution without a minimum	224
10.10	Ternary systems with one binary solid solution with a minimum	226
10.15	Ternary systems with more than one solid solution series	228
10.20	Ternary systems with hinary and ternary compounds	233
10.21	Quaternary systems	233
10.22	A diabatic phase relations	236
10.25	Computer-generated phase relations	239
10.24	Problems	240
10.25	Tionens	210
11	Effects of volatiles on melt equilibria	243
11.1	Introduction: composition of volcanic gases	243
11.2	Solubility of H ₂ O in silicate melts	244
11.3	Solubility of CO ₂ in silicate melts	246
11.4	Solubility of sulfur in silicate melts	247
11.5	Effect of H ₂ O on melting in silicate systems	250
11.6	Fractional crystallization of hydrous magma	254
11.7	Effect of CO ₂ on melting in silicate systems	259
11.8	Role of oxygen fugacity in phase equilibria	261
11.9	Problems	265
12	Crystal growth	268
12.1	Introduction	268
12.2	Nucleation	268
12.3	Crystal growth rates	271
12.4	Crystal morphology determined by rate-determining growth	
	processes	274
12.5	Crystal size distribution	281
12.6	Equilibrium shape of crystals	286
12.7	Surface free energy and wetting of crystals by magma	291
12.8	Problems	294

13	Isotope geochemistry related to petrology		295
13.1	Introduction		295
13.2	Radioactive decay schemes		295
13.3	Rate of radioactive decay		296
13.4	Evolution of isotopic reservoirs in the Earth		304
13.5	Stable isotopes		312
13.6	Problems		315
14	Magmatic processos		216
14	Magnatic processes		310
14.1	Introduction		310
14.2	Compositional variation in suites of volcanic rocks		31/
14.5	Crystal settling in magma		321
14.4	Magma convection		323
14.5	Crystal-mush compaction		328
14.6	Igneous cumulates		332
14.7	Liquid immiscibility		340
14.8	Diffusion processes: Soret effect		345
14.9	Pneumatolitic action	1	346
14.10	Magmatic assimilation and assimilation and fractional		
	crystallization (AFC)		347
14.11	Mixing of magmas		350
14.12	Trace element fractionation by magmas		356
14.13	Problems		361
15	Igneous rock associations		365
15.1	Introduction		365
15.1	Igneous rocks of oceanic regions		365
15.2	Igneous rocks associated with convergent plate boundaries		374
15.5	Continental flood basalts and large igneous provinces		380
15.4	Large levered igneous complexes		201
15.5	Continental alkalina rocka		200
15.0	Ultra alkalina and ailian noor alkalina roaka		204
15.7	Creative and since-poor alkanne locks		394
15.8	Special Precambran associations		397
15.9	Meteorite-impact-generated rocks		405
15.10	Problems		411
16	Metamorphism and metamorphic facies		414
16.1	Introduction		414
16.2	Metamorphic volatiles		415
16.3	Metamorphic grade		417
16.4	Metamorphic facies		419
16.5	Petrogenetic grids		424
16.6	Ultrahigh-pressure and ultrahigh-temperature metamorphism		425
16.7	Problems		427
	Problem Problem		
17	Deformation and textures of metamorphic rocks		428
17.1	Introduction		428
17.2	Metamorphic foliation		428
17.3	Porphyroblasts		435
17.4	Interpretation of porphyroblast-inclusion relations		436
17.5	Metamorphic textures in shear zones	4	440
17.6	Problems		444
18	Graphical analysis of metamorphic mineral ascemblages		447
19.1	Introduction		117
10.1	Madal matamorphic tarrana		447
10.2	Model metamorphic terrane		44/

 		Contents	X1
18.3	Interpretation and representation of mineral assemblages		448
18.4	Metamorphic mineral assemblages		451
18.5	Simple petrogenetic grid		452
18.6	ACE and AKE diagrams		454
10.0	ACT and ART diagrams		457
10.7	Compliant contraction of minoral examples of four		437
18.8	Graphical representation of mineral assemblages in systems of four		
	or more components		457
18.9	Variance in metapelitic mineral assemblages		460
18.10	Isograds in metapelitic rocks		462
18.11	Effect of P and T on reactions among solid solution phases		465
18.12	Petrogenetic grid for metapelitic rocks		467
18.13	Application: regional pressure estimation		469
18.14	Problems		470
19	Geothermometry, geobarometry, and mineral reactions		
	among solid solutions		473
19.1	Introduction		473
19.2	Solid solutions and thermobarometry		473
19.3	Thermobarometry and multiple reactions		476
19.4	Trace element thermometry		478
19.5	Solvus thermometry		478
19.6	Oxygen isotope thermometry		479
19.7	Mineral zoning and thermobarometry		480
19.8	Introduction to pseudosections		482
19.9	Field examples		485
19.10	Problems		487
20	Minoral reactions involving H O and CO		400
20	Interchartier		490
20.1	Introduction		490
20.2	P-V-I behavior of fluids		490
20.3	Carbonaceous organic matter		493
20.4	Metamorphosed siliceous carbonate rocks		493
20.5	Thermodynamics of mineral reactions with H ₂ O–CO ₂ fluids		497
20.6	Reaction progress and fluid infiltration		504
20.7	Problems		508
21	Material transport during metamorphism		511
21.1	Introduction		511
21.2	Porosity		512
21.3	Fluid flow		514
21.4	Diffusion		517
21.5	Mechanical dispersion		518
21.6	Dissolution of minerals in supercritical H ₂ O		519
21.7	Mass transfer mechanisms at a metamorphic isograd		521
21.8	Metasomatic zonation		522
21.0	Estimating fluid fluxes during metamorphism using geochemical fr	onts	525
21.10	Fluid fluxes along gradients in temperature and pressure	onto	530
21.10	Protection kinetics		522
21.11	Multidimensional transport and reaction		540
21.12	Determining changes in composition and values using more below		540
21.13	Determining changes in composition and volume using mass baland	20	550
21.14	Regional fluid transport through the crust		555
21.15	Problems		556
22	Pressure-temperature-time paths and heat transfer		
	during metamorphism		560
22.1	Introduction		560
22.2	Preservation of metamorphic mineral assemblages		560

xii Contents

_

22.3	Metamorphic field gradients		562
22.4	Calculation of pressure-temperature-time	paths	563
22.5	Heat advection by fluids and magmas	2.81	569
22.6	Effects of reaction		574
22.7	Observed $P-T-t$ paths		575
22.8	Problems		580
23	Origin of rocks		584
23.1	Introduction		584
23.2	Advective heat transfer in the Earth		585
23.3	Conditions necessary for rock generation		591
23.4	Generation and accumulation of melts		599
23.5	Composition of the source of magmas		601
23.6	Partial melting in the source region		604
23.7	Summary and conclusions		612
23.8	Problems		612
Answe	ers to selected numerical problems		615
Refere	ences		618
Index			645