Originally published as two separate volumes, *The Theory of Quantum Liquids* is a classic text that describes the qualitative and unifying aspects of an extremely broad and diversified field. The first part (Volume I) deals with Landau's Fermi liquid theory, and its application to the ³He and electrons in metals. The nature of elementary excitation, the central concept of response functions, and the new features brought about by the long range of Coulomb interactions are discussed at length. The second part (Volume II) consists of a detailed treatment of the Bose condesation and liquid ⁴He, including the development of Bose liquid theory, a microsopic basis for the two-fluid model, and the description of the elementary excitations of liguid HeII. Suitable for anyone with a knowledge of elementary quantum mechanics and statistical physics, this book introduces the basic concepts of quantum fluids in a simple language accessible to all.

ABOUT THE ADVANCED BOOK CLASSICS:

Read and cited by scientists and mathematicians worldwide, Advanced Book Classics are works that continue to inform today's groundbreaking research efforts. Redesigned and newly released in paperback, these graduate-level texts and monographs are now available to an even wider audience. Written by the most influential physicists of the twentieth century, these Advanced Book Classics promise to enrich and inspire a new generation of physicists.

DAVID PINES, is Co-Director of the Institute for Complex Adaptive matter and Science Advisor to the Director of LANSCE. He is Research Professor and Center for Advanced Study Professor Emeritus in the Department of Physics at the University of Illinois at Urbana-Champaign, and an External Professor at the Santa Fe Institute. He has made pioneering contributions to an undestanding of many-body problems in condensed matter and nuclear physics, and to theoretical astrophysics. Editor of Westview Press's Frontiers in Physics series and a former editor of the American Physical Society's Reviews of Modern Physics, Dr. Pines is a memeber of the national academy of Sciences, the American Philosophical Society, and the American Arts and Sciences. He is a foreign memeber of the Russian Academy of Sciences and an honorary member of the Hungarian Academy of Sciences. He has been awarded the Eugene Feenberg Memorial Medal for Contributions to Many-Body Theory, the P.A.M. Dirac Silver Medal for the Advancement of Theoretical Physcis, and the Friemann Prize in Condensed Matter Physics.

PHILIPPE NOZIÈRES is Professor of Statistical Physics at Collège de France, Paris. He studied at École Normale Supérieure de Paris and at Princeton University. He has served as a professor at the University of Paris and at the University of Grenoble. A member of the Académie des Sciences and a Foreign Associate of the National Academy of Sciences, he has been awarded the Wolf Prize in Physics and the Gold Medal of the Centre National de la Recherche Scientifique. Dr. Nozières's work has been concerned with various facets of the many-body problem, with quantum fluids and low-temperature physics. His current work focuses on surface physics and crystal growth.

Cover design by Suzanne Heiser

Introductio	n minimum aman'i bay annon cit. A	1
Chapter 1.	Neutral Fermi Liquids	5
1.1.	The Quasiparticle Concept	7
1.2.		14
	Landau's Theory of Fermi Liquids	
1.3.	Equilibrium Properties	20
1.4.	Transport Equation for Quasiparticles	28
1.5.	Calculation of the Current Density	34
1.6.	Localized Quasiparticle Excitations	39
1.7.	Collective Modes	45
1.8.	Quasiparticle Collisions	57
1.9.	Zero Sound vs. First Sound	67
1.10.	Properties of Degenerate 3He	72
1.11.	Conclusion	79
	PROBLEMS	80
	REFERENCES	81
Chapter 2.	Response and Correlation in Neutral Systems	82
2.1.	Scattering of a Particle in the	83
	Born Approximation	

xxi

	2.2.	Particle Conservation: The F-Sum Rule	90
	2.3.	Linear Response Function	95
	2.4.	Qualitative Behavior of the Dynamic	107
		Form Factor for a Neutral Fermi Liquid	
	2.5.	Calculation of the Density Response Function	120
		by the Landau Theory	
	2.6.	Response and Correlation at Finite	130
		Temperatures	
	2.7.	The Hydrodynamic Limit	136
	2.8.	Conclusion	144
		PROBLEMS	145
		REFERENCES	146
Cha	pter 3.	Charged Fermi Liquids	147
	3.1.	Screening and Plasma Oscillation:	148
		An Elementary Introduction	
	3.2.	Dielectric Response Function	154
	3.3.	Macroscopic Transport Equation	157
	3.4.	Macroscopic Dielectric Response of a	164
		Quantum Plasma	
	35.		172
	3.6.		176
		Impurity Scattering	187
	3.8.	Electrons in Metals	195
		PROBLEMS	200
		REFERENCES	201
Cha	pter 4.	Response and Correlation in Homogeneous	202
		Electron Systems	
	4.1.	Dielectric Response Functions	204
	4.2.	Density-Fluctuation Excitations	210
	4.3.		219
	4.4.		223
	45.		235
	4.6.		243
	4.7.	Response to an Electromagnetic Field	251
		PROBLEMS	267
		REFERENCES	268

Contents xxiii

Chapter 5.	Microscopic Theories of the Electron Liquid	270
5.1.	Hartree-Fock Approximation	272
5.2.	Random Phase Approximation	279
5.3.	Ground State Energy in the RPA	295
5.4.	Quasiparticle Properties in the RPA	305
5.5.	Equations of Motion and the Generalized RPA	310
5.6.	Equilibrium Properties of Simple Metals	325
	PROBLEMS	341
	REFERENCES	343
Appendix.	Second Quantization	345
Index		351