Paperback Re-issue

This book is a concise introduction to the experimental technicalities of low and ultralow temperature physics research. The author has made extensive use of diagrams as aids to understanding, and refers the reader to the professional literature at appropriate points in the text.

The book begins with an introduction to the thermodynamic principles of refrigeration and thermometry. It covers the properties of fluid ³He/⁴He mixtures and the most important practical means of achieving low temperatures, including dilution and Pomeranchuk refrigeration and adiabatic nuclear demagnetisation.

This basic introduction to the subject will be of value to postgraduate students beginning research in low temperature physics, and to seasoned researchers moving into the field. It could also be used by advanced undergraduates taking low temperature physics courses.

Cambridge Studies in Low Temperature Physics

Editors

A. M. Goldman, Tate Laboratory of Physics, University of Minnesota P. V. E. McClintock, Department of Physics, University of Lancaster M. Springford, School of Mathematical and Physical Sciences, University of Sussex

Cambridge Studies in Low Temperature Physics is an international series which contains books at the graduate text level and above on all aspects of low temperature physics. This includes the study of condensed state helium and hydrogen, condensed matter physics studied at low temperatures, superconductivity and superconducting materials and their applications.

Cover designed by Ken Vail

Contents

	Preface	vii
1	Introduction to refrigeration and thermometry	1
	1.1 Preamble	1
	1.2 Refrigeration	1
	1.2.1 Free expansion of a fluid	1
	1.2.2 Isentropic expansion or compression of a fluid	2
	1.2.3 Isenthalpic expansion of a fluid	5
	1.2.4 Adiabatic (isentropic) demagnetisation of a	
	paramagnet	7
	1.3 Thermometry	10
	1.3.1 The Kelvin scale	10
	1.3.2 International practical temperature scales	12
2	Properties of fluid ³ He/ ⁴ He mixtures	14
	2.1 Preamble	14
	2.2 Phase diagrams	14
	2.3 Dilute mixtures	17
	2.4 Fermi degeneracy of solute helium-3	17
	2.5 Mixtures and the two-fluid model	18
	2.6 Osmotic pressure	18
	2.7 Vapour pressure	21
	2.8 Transport properties	21
3	Dilution refrigeration	24
	3.1 Preamble	24
	3.2 Evaporation cooling	24
	3.3 Layout of components in a dilution refrigerator	25
	3.4 Startup	30
	3.5 Amount and concentration of mixture	31
	3.6 The still	31

	3.7 How to obtain the lowest temperatures	34
	3.8 Heat exchangers	34
	3.9 Heat leaks	41
	3.10 Construction of heat exchangers	43
	3.11 Alternative methods avoiding the need for	
	exchangers	43
4	The Pomeranchuk refrigerator	46
	4.1 Preamble	46
	4.2 Properties of melting helium-3	48
	4.3 Cooling by solidification	49
	4.4 Need to be gentle in compression	52
	4.5 Some practical designs	54
	4.6 Some more recent designs	57
	4.7 Conclusions	59
5	Adiabatic nuclear demagnetisation	60
	5.1 Preamble	60
	5.2 Basic ideas	61
	5.3 Entropy data	62
	5.4 Ideal nuclear paramagnet	64
	5.5 Reality (non-ideality)	65
	5.6 Spin-lattice relaxation	66
	5.7 Hyperfine-enhanced Van Vleck paramagnets	69
	5.8 Geometry of the refrigerant: plates, wires, or powder?	70
	5.9 Apparatuses	73
6	Thermometry	81
	6.1 Preamble	81
	6.2 The NBS superconducting fixed point device	83
	6.3 Vapour pressure of helium-3	84
	6.4 Melting pressure of helium-3	85
	6.5 Carbon or germanium resistance	87
	6.6 Capacitance	89
	6.7 Cerous magnesium nitrate (CMN and CLMN)	89
	6.8 NMR methods	91
	6.9 Gamma-ray anisotropy	94
	6.10 Noise thermometry	95
	6.11 Conclusion	95
	References	96
	Inday	101