Buckley's *The Continuity Debate* is a highly original and insightful study of one of the most puzzling subjects in the world, the continuity of numbers in real analysis. There is a close study of the contributions of the great mathematicians and philosophers Richard Dedekind, Georg Cantor, Paul du Bois-Reymond, and Charles Sanders Peirce. Buckley arranges the treatment of these figures to make a forceful philosophical argument defending the role of infinitesimals, and du Bois-Reymond emerges as the hero of the theory of continuity. The book explores the overall significance of the treatment of continuity and of infinitesimals for mathematics and the philosophy of mathematics. Despite the conceptual and mathematical difficulty of the issues, the book is accessible to readers without technical knowledge, and it is beautifully written. This is essential reading for anyone interested in the perplexing question what the continuity of numbers, magnitudes, and the geometrical line might amount to.

Dr. Fredrick F. Schmitt Professor of Philosophy Indiana University

Buckley's book offers a welcome perspective for a historical understanding of a synthetic continuum where infinitesimals acquire a sound life, according to Robinson's nonstandard analysis. His extensive perusal of infinitesimals in Du Bois-Reymond and Peirce, in particular, show how much we have lost through purely analytical tools for measuring continuity. Buckley explores a rich melting between history, philosophy, foundations and mathematics, through which the latter emerges well enriched. A much needed monograph, in times when mathematical imagination is breathing with force again. Dr. Fernando Zalamea

Profesor Titular, Dedicación Exclusiva Universidad Nacional de Colombia Author of Synthetic Philosophy of Contemporary Mathematics

Author Biography

Benjamin Lee Buckley (Ph.D. Indiana University Bloomington, 2008) is on the philosophy faculty at Clayton State University. He has published several articles on gender studies, ethics, and sexuality, most recently including "The Third Precept: Toward a Buddhist Ethics of Bisexuality" (under the name Lisa Keele) in Hutchins and Williams, Sexuality, Religion, and the Sacred (Routledge, 2011). He has presented papers on a range of topics, including Quinean essentialism, an existential analysis of the ethical responsibility of domestic violence victims, and the metaphysical underpinnings of infinitesimal quantities, at conferences and as an invited speaker. His current projects include the phenomenology of transsexual experience, and the development of a feminist philosophy of mathematics.

Docent Press/www.docentpress.com Cover Design by Brenda Riddell, Graphic Details, Portsmouth, NF

Contents

List of I	igures	ix
Chapter 1.1. 1.2. 1.3. 1.4.	1. Introduction The Historical Importance of Mathematical Continuity Infinity, Infinities, and Transfinites Ghosts of Departed Quantities Intuitive Continuity	1 1 3 6 8
1.5.	Preliminary Remarks on Mathematical Continuity	11
1.6.	Organization	15
Chapter 2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	 History of Continuity Historical Context Aristotle's Continuity Archimedes and the Infinitely Small The Medieval Debate on Motion, Change, and Continuity Analysis Conclusions 	17 17 18 22 24 28 33
Chapter	3. Richard Dedekind	37
3.1.	Biography and Introduction	37
3.2.	Dedekind Cuts and the Principle of Continuity	39
3.3.	Dedekind's Theory of Number	45
3.4.	The Nature of Dedekind Continuity	52
5.0.	Infinitesimals	56
Chapter	4. Georg Cantor	61
4.1.	Biography and Introduction	61
4.2.	Real Numbers (1872)	62

no		-		-
$(\cdot, (\cdot))$	NV.	E HO	N.'.	\mathbf{vs}
UU	N	L E	N .	1.2

4.3.	Continuity and Denumerability (1872 - 1878)	67
4.4.	Early Real-Number Continuity (1878)	69
4.5.	Infinity, and the Definition of Continuity (1883)	72
4.6.	Infinitesimals (1883 and 1887)	76
Chapter	5. Paul du Bois-Reymond	83
5.1.	Biography and Introduction	83
5.2.	Infinitärcalcül	85
5.3.	Idealist versus Empiricist: Basic Theories, and Straight Lines	88
5.4.	Infinitesimals, For and Against	94
5.5.	Continuity and a Unified Mathematics	102
Chapter	6. Charles Sanders Peirce	107
6.1.	Introduction	107
6.2.	Synechism	108
6.3.	Early Definition of Continuity	110
6.4.	Middle Definition of Continuity	111
6.5.	Later Definition of Continuity	115
6.6.	Advantages and Disadvantages of Peirce's Late Continuity	121
6.7.	Peirce's Infinitesimals and his Mathematical Continuity	123
6.8.	Peirce's Infinitesimals and his Final Definition of Continuity	128
Chapter	7. Infinitesimal Interlude	131
Chapter	8. Conclusions	139
8.1.	Introduction	139
8.2.	Summary of Our Four Figures	140
8.3.	Compositional Continua and Aristotle	149
8.4.	Continuity, Cantor, and Dedekind	152
8.5.	Continuity and Peirce	157
8.6.	Continuity and du Bois-Reymond	159
8.7.	Conclusion	162
Bibliog	aphy	165

viii