INTRODUCTION 1 CONSTRUCTION OF GEAR HOBS 1.1 Front Involute Gearing Construction Design Solutions 1.1.1 Solid hobs 1.1.2 Gear hobs with cutting elements 1.1.3 Stacked hobs with cutting elements 1.1.4 Tool systems for gearing 1.2 Gear hob design and calculation 1.2.1 In-feed structural element design procedure 2 GEAR WHEEL THEORY 2.1 Evolvent creating principles

3 BASIC METHODS OF PRIMARY TOOL SURFACE

4 GEOMETRICAL THEORY OF GEAR WHEEL TOOTH

4.3.1 Envelope, Contact Equation and Contact Curve

5 THEORY OF N-PARAMERIC ENVELOPE METHOD

6 GEARING PROFILE GENERATION BY MEANS OF BASIC

Specification of envelope curve formed by rack profiles

Rack motion transformation in gear wheel coordinate system

Influence of the basic rack profile upon final tooth profile

4.2 Relative Normal Curvature and Relative Geodesic Torsion

3.1 Basic kinematic schemes of machining

3.3 Methods of tool primary surface definition

Normal Curvature and Geodesic Torsion

be the vector equation of Σ with u', v' as parameters.

4.3.2 Characteristic point, edge of regression

3.2 Kinematic schemes of creating

CONJUGATED SURFACES

4.4 Notes on relative motions 4.5 Transformation of Coordinates

4.6.2 Conjugated surfaces

6.1 Basic rack profile geometry analysis

4.6.3 Cylindrical gears

RACK

6.2

6.3

4.6 Conjugated surfaces 4.6.1 Contact equations

4.3 Envelope of a Family of Surfaces

5

6

6

8

9

10

10

19

24

28

28 29

30

32

32

35

42

43

44

48 53

61 65

66

67

71

80

84

85

89

93

94

CONTENT

SPECIFICATION

4.1

7 Gear hobs Profiling	100
7.1 The Hob Primary Surface Analysis	101
7.2 Basic Rack Surface Analysis	109
7.3 Setting of the hob profile deviation from the basic rack	113
7.3.1 Parameter transformation into hob coordinate system parts	114
7.3.1 The rack parameter transformation	116
7.4 Analysis of the hob profile deviations from the basic rack	117
7.5 Conjugated surface between the hob and the rack	127
7.5.1 Creation of a new profile in the axial plane	129
7.5.2 Maximal deviation analysis for linear part of the profile	134
8 The application of non-conventional technologies in the production	1
of gears	140
8.1 Cutting materials by water jet in the production of gears	142
8.2 Cutting materials by laser beam in the production of gears	143
8.3 Cutting material by plasma arc in the production of gears	145
8.3.1 Cutting material by plasma arc	146
8.3.2 The parameters which influenc cutting by plasma	149
8.3.3 Advantages and disadvantages of cutting by plasma	150
8.4 Cuttig gears by laser	150
8.5 Manufacture of gears by plasma	151
8.5.1 Gear produced by plasma 152	
8.6 Gear produced by waterjet	153
8.6.1 Used technical equipment	153
8.6.2 Gear produced by waterjet	154
8.7 Measuring surface roughness Ra	155
8.8 Measurement of microhardness HV 0.2	156
8.8.1 Analysis of macroscopic samples	158
8.9 Comparison produced gears oby unconventional technology	160
8.9.1 Comparison of the times and the rate of material division	164
8.9.2 Determination of mathematical functions	164
8.9.3 Comparison of time-consuming individual technologies	166
8.9.4 Comparison of fractionation technology laser, plasma and WJ	166
Literature	170