

Studies in the Development of Modern Mathematics

A series of Books and Monographs on the development of mathematical concepts within their scientific and historical context. Edited by Yu.I. Manin, Max-Planck-Institut für Mathematik, Bonn, Germany, Steklov Institute of Mathematics, Moscow, Russia

FOURIER SERIES AND WAVELETS

J.-P. Kahane and P.-G. Lemarié-Rieusset

Université de Paris-Sud, France

This comprehensive monograph presents the history and achievements of one of the most important figures in modern mathematics, covering the work of Fourier from his first memoir on the Analytical Theory of Heat to the latest developments in wavelet theory. The work is divided into two parts: the first deals with Fourier series in the classical sense, decomposition of a function into harmonic components, while the second part expounds the modern theory of wavelets – the most recent tool in pure and applied harmonic analysis.

Originally, Fourier series were used to describe and compute the functions which occur in heat diffusion and equilibrium, but they soon led to the development of new theories by Fourier's followers, and some of these original papers are considered here. The diverse applications of classical Fourier series and wavelets, covering such areas as theoretical physics, image analysis and telecommunications, means that this book will be of interest to mathematicians, engineers and physicists alike. The second part of the book is a self-contained exposition, and may serve as a reference on wavelets.

About the Authors

Professor Kahane and Dr Lemarié-Rieusset are currently involved in research at the Department of Mathematics, Université de Paris-Sud in France. Dr Lemarié-Rieusset has long been interested in the theory of wavelets and published the first paper on the subject with Yves Meyer in 1986.

Titles of related interest

Symplectic Geometry, 2nd Edition

A.T. Fomenko

Linear Algebra and Geometry

A.I. Kostrikin and Yu.I. Manin

Applicable Analysis, an international journal

edited by M. Marcus and R.C. Thomson

ISBN 2-88124-993-0

ISSN 1040-6441

ISBN 2-88124-993-0

9 782881 249938

Gordon and Breach Publishers is a member of The Gordon and Breach Publishing Group. The Group maintains offices in Australia, China, France, Germany, India, Japan, Luxembourg, Malaysia, The Netherlands, Russia, Singapore, Switzerland, Thailand, United Kingdom, United States.

CONTENTS

Preface

xi

PART I. FOURIER SERIES

Introduction. What are Fourier series about?	1
Chapter 1. Who was Fourier?	3
Chapter 2. The beginning of Fourier series	9
1. The analytical theory of heat. Introduction	9
2. Chapters I to III	10
3. Chapters IV to IX	13
4. Back to the introduction	14
Chapter 3. Predecessors and challengers	23
1. The prehistory of harmonic analysis	23
2. Vibrating strings, D. Bernoulli, Euler, and d'Alembert	23
3. Lagrange	25
4. Euler and Fourier formulas, Clairaut	27
5. Poisson and Cauchy	28
6. For further information	29
Chapter 4. Dirichlet and the convergence problem	31
1. Dirichlet	31
2. Comments on the article	31
3. The convergence problem since then	33
4. Dirichlet and Jordan	36
5. Dirichlet's original paper	36
6. A quotation of Jacobi	46
Chapter 5. Riemann and real analysis	49
1. Riemann	49
2. The memoir on trigonometric series. The historical part	50
3. The memoir on trigonometric series. The notion of integral	51
4. The memoir on trigonometric series. Functions representable by such series	52
5. The memoir on trigonometric series. The final section	54

6. Other special trigonometric series. Riemann and Weierstrass	57
7. An overview on the influence of Riemann's memoir just after 1867	58
8. A partial view on the influence of Riemann's memoir in the twentieth century	59
9. An excerpt from Riemann's memoir	61
Chapter 6. Cantor and set theory	67
1. Cantor	67
2. Cantor's works on trigonometric series	68
3. Über die Ausdehnung	69
4. Sets of uniqueness and sets of multiplicity	70
5. Two methods for thin sets in Fourier analysis	72
6. Baire's method	73
7. Randomization	74
8. Another look on Baire's theory	74
9. Recent results and new methods from general set theory	76
10. The first paper in the theory of sets	77
Chapter 7. The turn of the century and Fejér's theorem	87
1. Trigonometric series as a disreputable subject	87
2. The circumstances of Fejér's theorem	89
3. A few applications and continuations of Fejér's theorem	91
Chapter 8. Lebesgue and functional analysis	95
1. Lebesgue	95
2. Lebesgue and Fatou on trigonometric series (1902–1906)	96
3. Trigonometric series and the Lebesgue integral	98
4. Fatou – Parseval and Riesz – Fischer	99
5. Riesz – Fischer and the beginning of Hilbert spaces	100
6. L^p , ℓ^q , functions and coefficients	101
7. L^p , H^p , conjugate functions	103
8. Functionals	105
9. Approximation	106
Chapter 9. Lacunarity and randomness	109
1. A brief history	109
2. Rademacher, Steinhaus and Gaussian series	111
3. Hadamard series, Riesz products and Sidon sets	113
4. Random trigonometric series	115
5. Application of random methods to Sidon sets	118

6. Lacunary orthogonal series. $\Lambda(s)$ sets	120
7. Local and global properties of random trigonometric series	121
8. Local and global properties of lacunary trigonometric series	122
9. Local and global properties of Hadamard trigonometric series	124
Chapter 10. Algebraic structures	127
1. An inheritance from Norbert Wiener	127
2. Compact Abelian groups	128
3. The Wiener–Lévy theorem	130
4. The converse of Wiener–Lévy’s theorem	132
5. A problem on spectral synthesis with a negative solution	133
6. Another negative result on spectral synthesis	135
7. Homomorphisms of algebras $A(G)$	136
Chapter 11. Martingales and H^p spaces	139
1. Taylor series, Walsh series, and martingales	139
2. A typical use of Walsh expansions: a best possible Khintchin inequality	139
3. Walsh series and dyadic martingales	141
4. The Paley theorem on Walsh series	142
5. The H^p spaces of dyadic martingales	145
6. The classical H^p spaces and Brownian motion	147
Chapter 12. A few classical applications	149
1. Back to Fourier	149
2. The three typical PDEs	149
3. Two extremal problems on curves	151
4. The Poisson formula and the Shannon sampling	154
5. Fast Fourier transform	156
References	159
Index	170

PART II. WAVELETS

Chapter 0. Wavelets: A brief historical account	177
1. Jean Morlet and the beginning of wavelet theory (1982)	177
2. Alex Grossmann and the Marseille team (1984)	180
3. Yves Meyer and the triumph of harmonic analysis (1985)	182
4. Stéphane Mallat and the fast wavelet transform (1986)	183
5. Ingrid Daubechies and the FIR filters (1987)	185

Chapter 1. The notion of wavelet representation	189
1. Time – frequency localization and Heisenberg's inequality	189
2. Almost orthogonal families, frames and bases in a Hilbert space	193
3. Fourier windows, Gabor wavelets and the Balian – Low theorem	196
4. Morlet wavelets	198
5. Wavelet analysis of global regularity	201
6. Wavelet analysis of pointwise regularity	207
Chapter 2. Discrete wavelet transforms	213
1. Sampling theorems for the Morlet wavelet representation	213
2. The vaguelettes lemma and related results for $H_{\epsilon\epsilon}$ spaces	215
3. Proof of the regular sampling theorem	219
4. Proof of the irregular sampling theorem	224
5. Some remarks on dual frames	226
6. Wavelet theory and modern Littlewood–Paley theory	228
Chapter 3. The structure of a wavelet basis	231
1. General properties of shift-invariant spaces	231
2. The structure of a wavelet basis	240
3. Definition and examples of multi-resolution analysis	246
4. Non-existence of regular wavelets for the Hardy space $H^{(2)}$	248
Chapter 4. The theory of scaling filters	253
1. Multi-resolution analysis, scaling functions and scaling filters	253
2. Properties of the scaling filters	255
3. Derivatives and primitives of a regular scaling function	264
4. Compactly supported scaling functions	269
Chapter 5. Daubechies' functions and other examples of scaling functions	277
1. Interpolating scaling functions	277
2. Orthogonal multi-resolution analyses	285
3. Spline functions: the case of orthogonal spline wavelets	299
4. Bi-orthogonal spline wavelets	303
Chapter 6. Wavelets and functional analysis	307
1. Bi-orthogonal wavelets and functional analysis	307
2. Wavelets and Lebesgue spaces	312
3. H^1 and BMO	320
4. Weighted Lebesgue spaces	326
5. Besov spaces	328
6. Local analysis	335

Chapter 7. Multivariate wavelets	337
1. Multivariate wavelets: a general description	337
2. Existence of multivariate wavelets	341
3. Properties of multivariate wavelets	345
Chapter 8. Algorithms	347
1. The continuous wavelet transform	347
2. Mallat's algorithm	348
3. Wavelets on the interval	353
4. Quadrature formulas	358
5. The BCR algorithm	360
6. The wavelet shrinkage	362
Chapter 9. Further extensions of wavelet theory	363
1. Multiple scaling functions	363
2. Wavelet packets	363
3. Local sine bases	367
4. The matching pursuit algorithm	370
Chapter 10. Some examples of applications of wavelets to analysis	373
1. Wavelets and para-products	373
2. The div-curl theorem	376
3. Calderón – Zygmund operators	378
4. The Riemann function	382
References	385
Index	390