CONTENTS

Prej	Preface		
1	TIME SERIES DATA: EXAMPLES AND BASIC CONCEPTS	1	
1.1	Introduction	1	
1.2	Examples of Time Series Data	1	
1.3	Understanding Autocorrelation	10	
1.4	The Wold Decomposition	12	
1.5	The Impulse Response Function	14	
1.6	Superposition Principle	15	
1.7	Parsimonious Models	18	
	Exercises	19	
2	VISUALIZING TIME SERIES DATA STRUCTURES: GRAPHICAL TOOLS	21	
2.1	Introduction	21	
2.2	Graphical Analysis of Time Series	22	
2.3	Graph Terminology	23	
2.4	Graphical Perception	24	
2.5	Principles of Graph Construction	28	
2.6	Aspect Ratio	30	
2.7	Time Series Plots	34	
2.8	Bad Graphics	38	
	Exercises	46	
3	STATIONARY MODELS	47	
3.1	Basics of Stationary Time Series Models	47	
3.2	Autoregressive Moving Average (ARMA) Models	54	
3.3	Stationarity and Invertibility of ARMA Models	62	
3.4	Checking for Stationarity using Variogram	66	
3.5	Transformation of Data	69	
	Exercises	73	
4	NONSTATIONARY MODELS	79	
4.1	Introduction	79	
4.2	Detecting Nonstationarity	79	
4.3	Autoregressive Integrated Moving Average (ARIMA) Models	83	
4.4	Forecasting using ARIMA Models	91	
4.5	Example 2: Concentration Measurements from a Chemical Process	93	

viii CONTENTS

6

4.6	The EWMA Forecast	103
	Exercises	104
5	SEASONAL MODELS	111
51	Seasonal Data	111
5.2	Seasonal ARIMA Models	116
53	Forecasting using Seasonal ARIMA Models	124
5.4	Example 2: Company X's Sales Data	126
	Exercises	152
6	TIME SERIES MODEL SELECTION	155
6.1	Introduction	155
62	Finding the "BEST" Model	155
6.3	Example: Internet Users Data	156
6.4	Model Selection Criteria	163
6.5	Impulse Response Function to Study the Differences in Models	166
6.6	Comparing Impulse Response Functions for Competing Models	169
6.7	ARIMA Models as Rational Approximations	170
6.8	AR Versus Arma Controversy	17
6.9	Final Thoughts on Model Selection	17.
	Appendix 6.1: How to Compute Impulse Response Functions	17
	with a Spreadsheet	17.
	Exercises	1 /4
7	ADDITIONAL ISSUES IN ARIMA MODELS	17
7.1	Introduction	17
72	Linear Difference Equations	17
73	Eventual Forecast Function	18
7.4	Deterministic Trend Models	18
7.5	Yet Another Argument for Differencing	18
7.6	Constant Term in ARIMA Models	19
7.7	Cancellation of Terms in ARIMA Models	19
7.8	Stochastic Trend: Unit Root Nonstationary Processes	19
7.9	Overdifferencing and Underdifferencing	19
7.10) Missing Values in Time Series Data	19
	Exercises	20
8	TRANSFER FUNCTION MODELS	2
8.1	Introduction	20
82	Studying Input–Output Relationships	20
83	Example 1: The Box-Jenkins' Gas Furnace	20
8.4	Spurious Cross Correlations	20
8.5	Prewhitening	20
8.6	Identification of the Transfer Function	2
8.7	Modeling the Noise	2
8.8	The General Methodology for Transfer Function Models	23

	(CONTENTS IN
8.9 Fore	casting Using Transfer Function-Noise Models	224
8.10 Inter	vention Analysis	238
Exer	cises	261
9 ADDI	TIONAL TOPICS	263
9.1 Sput	ious Relationships	263
9.2 Auto	correlation in Regression	271
9.3 Process Regime Changes		278
9.4 Ana	vsis of Multiple Time Series	285
95 Stru	ctural Analysis of Multiple Time Series	290
Exe	cises	310
Appendix A	DATASETS USED IN THE EXAMPLES	31
Table A.1	Temperature Readings from a Ceramic Furnace	312
Table A 2	Chemical Process Temperature Readings	31
Table A 3	Chemical Process Concentration Readings	314
Table A 4	International Airline Passengers	31:
Table A 5	Company X's Sales Data	31
Table A 6	Internet Users Data	31
Table A 7	Historical Sea Level (mm) Data in Copenhagen, Denmark	31
Table A 8	Gas Furnace Data	31
Table A 0	Sales with Leading Indicator	31
Table A 1(Crest/Colgate Market Share	32
Table A 11	Simulated Process Data	32
Table A 1	Coen et al. (1969) Data	32
Table A 12	Temperature Data from a Ceramic Furnace	32
Table A 1	Temperature Readings from an Industrial Process	32
Table A.1	US Hog Series	32
Appendix B	DATASETS USED IN THE EXERCISES	32
Table B 1	Beverage Amount (ml)	32
Table B.2	Pressure of the Steam Fed to a Distillation Column (bar)	32
Table B 3	Number of Paper Checks Processed in a Local Bank	33
Table B 4	Monthly Sea Levels in Los Angeles. California (mm)	33
Table B 5	Temperature Readings from a Chemical Process (°C)	33
Table B 6	Daily Average Exchange Rates between US Dollar and Euro	33
Table B 7	Monthly US Unemployment Rates	33
Table B &	Monthly Residential Electricity Sales (MWh) and Average	
1000 0.0	Residential Electricity Retail Price (c/kWh) in the United St	ates 33
Table B 0	Monthly Outstanding Consumer Credits Provided by Comm	ercial
rable D.9	Banks in the United States (million USD)	34
Table B 1	100 Observations Simulated from an ARMA (1, 1) Process	34
Table B.1	Quarterly Rental Vacancy Rates in the United States	34
Table B.1	Wölfer Sunspot Numbers	34
Table B.1	Viscosity Readings from a Chemical Process	34
Table B 1	4 UK Midvear Population	34
THOIC D.I	· Or mujour i opulation	5

Unemployment and GDP data for the United Kingdom

347

Table B.15

X CONTENTS

Table B.16	Monthly Crude Oil Production of OPEC Nations	348
Table B.17	Quarterly Dollar Sales of Marshall Field & Company (\$1000)	360
Bibliography		361
Index		365