CONTENTS

CONTENTS	
1 Experiment in Surgical Disciplines	24
(Liška, Brůha, Vyčítal)	
1.1 The History of the Use of Experimental and Laboratory	
Animals	24
1.1.1 Ancient Cultures, Egypt and the Hebrew Civilisation	24
1.1.2 Ancient Greece	24
1.1.3 The Deterioration of Mediaeval Medicine	25
1.1.4 The Renaissance of Medicine, the Medicine of the Renaissance	25
1.1.5 The Birth of Experiment	25
1.1.6 The Establishment of Modern Scientific Approaches	28
1.2 The Importance of Experimental Work for Current	
Medical Practice	31
1.2.1 Experiments on Cell Cultures	32
1.2.2 Experiments on Animals	33
2 Management of Animal Experimentation (Pitule, Vyčítal, Brůha, Liška)	36
2.1 Ethical Aspects of Animal Experiments	36
2.1.1 Introduction	36
2.1.2 Historical Development	37
2.1.3 The Rule of the Three Rs 2.1.4 Conclusion	40
2.2 Legal Standards Relating to the Protection of Experimental Animals	41
2.3 Introduction to Biology and Breeding of Experimental	
and Laboratory Animals	42
2.3.1. Basic Needs od Laboratory Animals	42
2.3.2 Systems of Breeding Experimental Animals	44
2.3.3 Genetic Characteristics of Experimental Animals	44

2.3.4 Characteristics of Well-known Experimentally Used	
Species	45
3 Anesthesia of Experimental Animals (Beneš)	50
3.1 Drug Administration, Anesthesia Care, Preoperative	
Preparation	50
3.1.2 Basic Anesthetic Methods and Techniques	50
3.1.2.1 Types of anesthesia care and possibilities	
of their induction	50
3.1.2.2 Methods of drug administration	51
3.1.3 Basic overview of agents for anesthesia	
in laboratory animals	53
3.1.3.1 Anesthetics	53
3.1.3.2 Analgesics	55
3.1.3.3 Muscle relaxants	56
3.1.4 Basic Preparation of Laboratory Animals for Anesthesia	57
3.2 Monitoring and Support of Vital Functions During	
Anesthesia of Laboratory Animals	59
3.2.1 Introduction	59
2.3.1. Basic Needs of Laboratory Animals	59
3.2.2 Basic Clinical Monitoring of Animal under Anesthesia	59
3.2.2.1 Monitoring of ventilation and oxygenation	59
3.2.2.2 Monitoring of cardiovascular system	61
3.2.3 Values of Basic Vital Functions in Different Animal	
Species	63
3.2.4 Ventilatory Support and Monitoring of Pulmonary	
Function	64
3.2.5 Extended Monitoring of Hemodynamics	
and Perfusion of Individual Organs	65
3.2.6 Laboratory Methods	68
3.2.7 Experimental Methods	69

3.2.7.1 Monitoring of tissue oxygen	69
3.2.7.2 Monitoring of microcirculation	69
3.3 Anesthesia, Analgesia, Postoperative Care	70
3.3.1 Introduction	70
3.3.2 Anesthesia of Small Laboratory Animals	70
3.3.2.1 General advantages and disadvantages of using	9
small animals in laboratory experiments	70
3.3,2.2 Anesthetic procedures in small animals	71
3.3.3 Anesthesia of Large Laboratory Animals	73
3.3.3.1 Basic procedure and induction of anesthesia	74
3.3.3.2 Intensive care in animal experiments	76
3.3.4 Analgesia	77
3.3.4.1 Pain and its manifestation in experimental animals	77
3.3.4.2 Drugs used for pain relief	78
3.3.5 Postoperative Care	80
3.3.6 Euthanasia	81
3.3.6.1 Basic ethical principles	81
3.3.6.2 Applicable methods	82
4 Basic Rules of Surgical Work	86
(Brůha, Vyčítal, Pálek, Skála, Třeška, Skalický, Liška)	
4.1 Asepsis and Antisepsis	86
4.1.1 Surgical Hand Scrubbing	86
4.1.2 Preparation of the Surgical Field	90
4.1.3 Dressing into Surgical Gown and Gloves	93
4.1.4 Draping of the Surgical Field	96
4.2 Disinfection and Sterilization	96
4.2.1 Disinfection	96
4.2.2 Sterilization	99

4.2.2.1 Physical sterilization	101
4.2.2.2 Chemical sterilization	102
4.3 Basic Surgical Procedures	102
4.3.1 Preparation for Surgery and the Arrangement	
of the Operating Theatre	102
4.3.2 Hemostasis	103
4.3.3 Preparation	104
4.3.4 The Technique of Knotting	105
4.3.5 The Technique of Sewing an Anastomosis	106
4.3.6 Drainage	110
4.4 Surgical Approaches	111
4.4.1 Laparotomy	111
4.4.2 Thoracotomy	113
4.4.3 Sternotomy	116
4.5 Postoperative Care and Postsurgical Complications	117
4.5.1 Postoperative Care	117
4.5.2 Postoperative Complications	117
4.5.2.1 CNS and metabolic complications	117
4.5.2.2 Circulatory complications	118
4.5.2.3 Respiratory complications	118
4.5.2.4 Complications on GIT	118
4.5.2.5 Urinary complications	119
4.5.2.6 Complications in the wound	119
4.6 Surgical Instruments	119
5 Examples of Experimental Work	152
(Vyčítal, Brůha, Křečková, Svobodová, Jiřík, Liška)	
5.1 Experimental Model of the Use of Cytokines in the	
Regeneration of the Liver after the Embolisation of the	
Portal Vein	152

5.1.1 The Effect of Cytokines and Growth Factors on the	
Regeneration of the Liver	152
5.1.2 Embolisation of the Portal Vein Branch	153
5.1.3 The Methods of the Experimental Study of the Ligar	tion
of the Right Branch of the Portal Vein	156
5.1.4 The Results of the Study	160
5.1.5 Conclusions of the Study	160
5.1.6 Protocol for the Experimental Model of the Augmentation of the Liver Parenchyma by Interleu after the Embolisation of the Right Branch of the P Vein	
5.2 Early Application of the Monoclonal Antibody Against the Transforming Growth Factor Beta-1 Before Extensive Resection Surgery of the Liver – Experiment on a Large Animal	164
5.2.1 Introduction	164
5.2.2 The phase Before the Resection	165
5.2.3 The Resection Phase and the Postsurgical Period	166
5.2.4 Termination of the Experiment	168
5.2.5 Statistical Analysis	168
5.2.6 Results	168
5.2.7 Conclusion	170
5.2.8 Protocol for the Experimental Model of the Regeneration of the Liver Parenchyma – Biological Therapy – the Inhibition of TGFβ-1, Group X1	170
5.3 Experimental Model of Liver Regeneration in a Toxically Damaged Liver Parenchyma, Experiment on a Domestic Pig	173
5.3.1 The Metabolism of Amino Acids, Carbohydrates an	d
Lipids in the Liver	173
5.3.2 Steatohepatitis	173

5.3.3 Alcoholic Steatohepatitis - ASH

173

5.3.4 Non-alcoholic Steatohepatitis – NASH	174
5.3.5 Chemotherapy-associated Steatohepatitis – CASH	174
5.3.6 Transforming Growth Factor Beta (TGF-β)	175
5.3.7 Solutions of the Experimental Study of Liver Regeneration in a Toxically Damaged Liver Parenchyma	175
5.3.8 Methodology of the Experimental Study of Liver Regeneration in a Toxically Damaged Liver Parenchyma	176
5.3.9 The Results of the Experimental Study of Liver Regeneration in a Toxically Damaged Liver	
Parenchyma	180
5.3.10 Conclusion of the Study	183
5.3.11 Protocol for the Experimental Study of Liver Regeneration in a Toxically Damaged Liver	
Parenchyma	183
5.4 Experimental Model of Biliary Obstruction – a Pilot Study	186
5.4.1 Introduction	186
5.4.2 Surgery	189
5.4.3 Postsurgical Period	190
5.4.4 Biochemistry	190
5.4.5 Ultrasonography	190
5.4.6 Termination of Experiment and Results	190
5.4.7 Protocol for the Experimental Model of Biliary Cirrl	nosis
 Experiment on a Large Animal (Domestic Pig) 	191
6 Cell Lines – In Vitro Model of Tumour Behaviour (Pešta)	196
6.1 Tissue and Cell Culture – History and Areas of Use	196
6.2 Types of Cell Cultures	200
6.3 The Growth Cycle of Cell Cultures	202

6.4 Environment Suitable for In Vitro Cell Culturing	205
6.4.1 Equipment of a Typical Cell Culture Laboratory	205
6.4.2 Cell Culture Media	210
6.5 Basic Procedures with Cells in Cell Culture	211
6.5.1 Cell Passaging	211
6.5.2 Freezing of Cell Cultures	212
6.6 Tumour Cell Lines	214
6.6.1 Culturing of Tumour Cell Lines	214
6.7 Study of Tumour Cell Lines and of the Mechanisms	
of the Effects of Medicines on Target Cells	215
6.7.1 Determination of gene Expression at the Level of RNA	215
6.7.2 Determination of Gene Expression at Protein Level	216
6.7.3 Tests Assessing Cell Proliferation and Viability	216
6.7.3.1 MTT test	216
6.7.3.2 Bromodeoxyuridine (BrdU) proliferation	
test and TUNEL assay	217
6.7.3.3 Analysis of cells in real time	217
6.7.4 Flow Cytometry	218
6.7.5 Gene Manipulations	219
6.7.6 Mammalian Expression Systems	220
7 Imaging Methods	222
(Mírka, Tonar, Baxa, Ferda, Tupý)	
7.1 New Trends in Radiological Diagnostic Imaging	222
7.1.1 Three Dimensional Imaging	222
7.1.1.1 3-D image reconstruction algorithms	225
7.1.1.2 Specifics of 3-D and 4-D ultrasonography	228
7.1.2 Computer aided diagnosis	228
7.1.2.1 CAD of small pulmonary nodules	230

7.1.2.2 CAD of colorectal polyps	236
7.1.2.3 CAD of breast cancer	237
7.1.2.4 CAD of pulmonary emboli	241
7.1.3 Functional Imaging – Perfusion	242
7.1.3.1 Introduction	242
7.1.3.2 Typical methods of nuclear medicine	244
7.1.3.3 Perfusion imaging using computed tomography	244
7.1.3.4 Perfusion magnetic resonance imaging	258
7.1.3.5 Perfusion examinations using ultrasound contrast imaging	260
7.1.4 Visualization of Metabolic and Cellular Activity	264
7.1.4.1 Hybrid PET/CT	266
7.1.4.2 Hybrid SPECT/CT	270
7.1.4.3 Evaluation of cellular functions using	
magnetic resonance imaging	272
7.1.4.4 Metabolism assessment by magnetic	
resonance spectroscopy	273
7.1.5 Contemporary Trends in Cardiac Imaging Using	
Computed Tomography	274
7.1.5.1 History	274
7.1.5.2 Technical aspects of data acquisition	
and reconstruction	275
7.1.5.3 Application of contrast agent	278
7.1.5.4 Static cardiac imaging	282
7.1.5.5 Dynamic and functional imaging	285
7.1.5.6 Perfusion (molecular) imaging	286
7.1.5.7 Perfusion CT	287
7.1.5.8 Dual-energy imaging	289
7.2 Imaging Radiological Methods in Experiment	292
7.2.1 X-ray Imaging Methods	293

7.2.2 Micro-CT	293
7.2.3 Ultrasonography	295
7.2.4 Magnetic Resonance	298
7.2.4.1 Magnetic resonance imaging (MRI)	298
7.2.4.2 Magnetic resonance spectroscopy (MRS)	299
7.2.4.3 Functional magnetic resonance imaging (fMRI)	299
7.2.4.4 Diffusion weighted imaging (DWI)	299
7.2.5 Use of Nuclear Medicine Techniques in Experiments	300
7.2.5.1 Introduction	301
7.2.5.2 Positron emission tomography (PET)	302
7.2.5.3 Single-photon emission computed tomograph	y
(SPECT)	302
7.2.5.4 Hybrid systems	302
7.3 Microscopic Techniques and Quantification of Tissue	
Structures	303
7.3.1 Basics of Microscopy	303
7.3.1.1 History of microscopy	303
7.3.1.2 Basic principles and terminology	304
7.3.1.3 Physical principles of microscopic methods	305
7.3.1.4 Optical microscope	308
7.3.1.5 Observation techniques in light microscopy	311
7.3.1.6 Transmission electron microscopy	313
7.3.1.7 Scanning electron microscopy	314
7.3.1.8 Laser microdissection	315
7.3.1.9 Image capture and digitization in microscopy	315
7.3.1.10 Types of objectives	316
7.3.1.11 Microscopic localization and dynamics of	
biological molecules	317

7.3.1.12 Working principles in microscopic	
localization of molecules	320
7.3.2 Quantitative Microscopy and Stereology	320
7.3.2.1 Basic principles of stereology	322
7.3.2.2 Unbiased stereology	322
7.3.2.3 Variability of results and optimization	
of biological studies	324
7.3.3 Image Analysis and Stereology	325
7.3.3.1 Mathematical morphology	326
7.3.3.2 Advantages of image analysis and stereology	327
7.3.4 Stereology	329
7.3.4.1 Dimension of probes and structural features	239
7.3.4.2 Strategy to ensure randomness	
of stereological probes	330
7.3.4.3 Ratios and densities	331
7.3.4.4 Estimates of area and volume using point grids	332
7.3.4.5 Estimates of lengths using planes in 3-D	
and linear probes in 2-D	332
7.3.4.6 Estimates of surface area and surface density	333
7.3.4.7 Quantification of microvessels	336
7.3.4.8 Estimates of numerical density of particles by	
disector	338
7.3.4.9 Direct estimates of the number of objects	
using optical fractionator	338
7.3.4.10 Using linear density to analyse ruptures	340
7.3.4.11 Relative labelling index	340
7.3.4.12 Cluster analysis and colocalization of object	341
7.3.4.13 Analysis of structural anisotropy in 2-D	342
7.3.4.14 Petri-Metrics	342

7.3.4.15 Estimates of wall thickness of tubular	
structures	345
7.3.5 Bias, Accuracy and Precision	346
7.3.5.1 Sources of bias	348
7.3.5.2 Biological variance	349
7.3.5.3 Sampling error	350
7.3.5.4 Components of total observed variance in	
percentage	351
7.3.5.5 Importance of pilot studies	354
7.3.5.6 Stereological analysis of archival material	
and "representative sections"	356
8 Introduction to Biomedical Statistics (Hošek)	368
8.1 What is Statistics?	368
8.1.1 Meaning	368
8.1.2 Statistics as a Discipline	368
8.1.3 Statistical Induction	368
8.1.4 Probability and Statistics	370
8.2 Data and their Types	370
8.2.1 What is Data?	370
8.2.2 Categories of Data	371
8.2.3 Recording and Storing Data	372
8.2.4 Problematic Phenomena in Data	374
8.3 Statistical Distribution	375
8.3.1 The Distribution of Probability, Statistics and	
Parameters	375
8.3.2 The Central Limit Theorem and Normal Distribution	376
8.3.3 The Properties of a Normal Distribution	377
8.3.4 Statistics and Parameters of Normal Distribution	378

8.3.5 The Choice of Statistics for the Analysis and	
Presentation of Data	380
8.4 The Presentation and Visualisation of Data	383
8.4.1 The Visualisation of the Frequency	384
8.4.1.1 The frequency in one variable	384
8.4.1.2 The frequency in more variables	384
8.4.2 Categorized Display of Continuous Variables	386
8.4.2.1 Column charts	386
8.4.2.2 Box plots	386
8.4.2.3 The histogram	386
8.4.2.4 The bee swarm plot	389
8.4.3 More Continuous Variables	390
8.4.4 The Display of Sequences and Time Series	391
8.5 Testing Hypotheses	391
8.5.1 Principles of Hypothesis Testing	391
8.5.2 Errors, Power and Reliability of the Tests	393
8.5.3 The Choice Between the One-tailed and	
the Two-tailed Test	395
8.5.4 The Multiple Testing Problem	396
8.5.5 The Choice of Test	397
8.5.5.1 One variable (researching the distribution	
of a variable)	399
8.5.5.2 Two variables (researching the dependency	
of variables)	440
8.5.5.3 More variables	405
8.6 Survival Analysis	406
8.6.1 The Nature of the Processed Data	406
8.6.2 Why do we Need Survival Analysis?	407
8.6.2.1 Censored observations	407
8.6.2.2 We only live once.	408

8.6.3 The Most Common Methods of Survival Analysis	409
8.6.3.1 The Kaplan-Meier method	409
8.6.3.2 Regression models	411
9 Regeneration of Tissues and Organs (Králičková)	414
9.1 Basic Terms in the Area of the Regeneration Processes	of
Tissues and Organs	414
9.2 The Relation Between Stem Cells and Regeneration	
Processes	414
9.2.1 Adult Stem Cells	415
9.2.1.1 Basic characteristics of adult stem cells	416
9.2.1.2 Characterization of stem cells - current	
state and its shortcomings	416
9.2.1.3 Adult stem cells with the potential	
for the therapy of various illnesses	416
9.2.1.4 Everything we do not know and why it is	
not yet working to our liking	417
9.2.2 Do Stem Cells Other than Adult Stem Cells Also Ha	ave
Merit for the Regeneration of Tissue?	418
9.2.2.1 Embryonic stem cells – definition, basic	
characteristics, merit	418
9.2.2.2 Foetal stem cells	418
9.2.2.3 Tumour stem cells	418
9.2.2.4 Stem cells on the border between classification	ons
and their sources - amniotic fluid, placenta	419
9.2.2.5 Therapeutic cloning	419
9.3 Everything we Have to Understand and be Able to Do with Stem Cells Before they Are Used for Therapy	420

9.3.1 Culturing of Stem Cells	420
9.3.1.1 History – first steps, groundbreaking points	420
9.3.1.2 Current possibilities - what works and,	
contrarily, what we "cannot do"	420
9.3.2 Differentiation of the Stem Cells	421
9.3.2.1 Neural differentiation procedures	421
9.3.2.2 Chondrogenic differentiation procedures,	
creation of elements of bone tissue	421
9.3,2,3 Cardiomyocytes and endothelial cells – their	
importance in therapy?	421
9.4 Modelling of Tissues and Organs	422
9.5 Is the Future in Tissue Therapy or a Return to Defined	
Methods?	422
9.5.1 The Arguments For and Against from a Biological Point of View	423
9.5.2 The Arguments For and Against from a Legislative	
Point of View	423
9.5.3 The Arguments For and Against from an Ethical	
Point of View	424
9.6 Conclusion	424
10 Biomechanics – Introduction and Selected Problems	428
(Rosenberg, Křen, Rohan, Vimmr, Jansová, Jonášová, Lobovs Lukeš, Štengl)	ký,
10.1 Introduction to Biomechanics	228
10.1.1 Aims and Benefits of Biomechanics	229
10.1.2 Modelling in Biomechanics	434
10.1.3 Material (Physical) Modelling	436
10.1.4 Computational Modelling	438

10.2 Biological Fluids and Interactions in Biomechanics	439
10.2.1 The General Role of Interaction in Human	
Biomechanics	440
10.2.2 Fluid Flow Modelling	443
10.2.2.1 Newtonian flow	446
10.2.3 Blood Flow Modelling in Coronary Bypasses	454
10.3 Interaction in the Lower Part of the Human Urinary Tract	466
10.3.1 Newtonian Fluid Flow	467
10.3.2 Elastic Continuum	467
10.3.3 Nonlinear Elastostatics	467
10.4 Interaction in the Total Knee Arthroplasty	478
10.4.1 Interaction in the Femoro-tibial Relation	480
10.4.2 The Flow of Synovial Fluid	480
10.4.3 Physical Model of the Knee Replacement	482
10.4.4 Interaction in the Arthroplasty of the Knee Joint	482
10.4,5 Interaction in the patello-femoral relation	485
10.5 Modelling of the Lower Part of the Urinary Tract Based	
on Cells Communication in the Bladder Wall	492
10.5.1 Introduction	492
10.5.2 Bladder – its Structure and Function During Filling	492
10.5.3 Models of the Smooth Muscle Cell Calcium	
Dynamics	493
10.5.4 Interstitial Cells of Cajal and ICCLC	493
10.5,5 Gap Junction	497
10.5.6 Computer Model – Examples	498
10.5.7 Conclusion	500
10.6 Phenomenological Model of Soft Tissues	500
10.6.1 Conception of the Composite Model	500
10.6.1.1 Viscoleastic model of passive fibres	503

10.6.1.2 Fibres with no resistance in compression	504
10.6.2 Spherical Hyperelastic Shell	506
10.6.3 Example: A Spherical Model of the Urinary Bladder	508
10.6.3.1 Spherical isotropic balloon with fibres	509
10.6.3.2 Composite model of the detrusor	512
10.6.4 Bi-phasic Model of Tissue – Biot Model	516
10.6.4.1 Biot model of the porous medium	516
10.6.4.2 Constitutive relationships	517
10.6.4.3 The fluid content increase	519
10.6.4.4 Darcy law	519
10.6.4.5 The equilibrium conditions	520
10.6.4.6 Mechanical energy and dissipation	521
10.7 A Multicompartment Model of Perfusion	524
10.7.1 Structure of Compartments in Parenchyma	524
10.7.2 Macroscopic Modelling of Darcy Flow in Parenchyma	525
10.7.3 Flow on Upper-level Vascular Trees	526
10.7.4 Coupling the "1-D" and the "Multicompartment Darcy Flow" Models	527
10.7.5 Convected Contrast Fluid in the Porous Materials	529
10.7.5.1 Tracer redistribution in parenchyma	529
10.7.5.2 Transport on branching network	530
10.7.6 Examples of the Perfusion Simulation	533