A monumental book written by a leading authority in particle physics and cosmology. Since publication of Weinberg's famous book "Gravitation and Cosmology" 35 years ago, there has been a real revolution both in cosmological theory and observations. A major effort of a great expert has been required to summarize the main developments in one book, and to make this presentation both highly accurate and accessible. This book will be greatly appreciated by a broad readership, ranging from students who just enter the field to experts in modern cosmology. It should be on the desk of every actively working cosmologist."

Andrei Linde, Stanford University

'Time is right for a survey of the physics of what has become a large and well-developed subject. Weinberg has done it, in an impressive fashion. He presents a full and careful assessment of the broad range of physics of modern cosmology, from the tools for measurements of the structure and evolution of the universe we see around us to the puzzles of dark matter and dark energy and the ideas about what the universe was like in the remote past, before it could have been described by the well-tested part of the theory.' Jim Peebles, Princeton University

'This book tackles the main events of today's cosmology: cosmic acceleration observed with supernovae, the exquisite structure of the cosmic microwave background, and the evidence for dark matter. Weinberg pays close attention to the historical development and summarizes the observations with care. He brings deep knowledge of the underlying physics and weaves these threads together into a rich text that will be of great value to astronomers and physicists. Everyone who works on cosmology will find something to learn in this book.'

Robert P. Kirshner, Harvard University

'The beauty of Weinberg's approach lies in his thoroughness. The literature in cosmology is sprawling, and for many topics within cosmology it is very hard to find a self-contained account. Weinberg has set out to bring it all together, from the basics of Friedmann-Robertson-Walker cosmology to modern inflation. All the important topics in modern cosmology are discussed. Weinberg's goal is to explain each of these topics from the ground up, never settling for vague arguments or for incomplete summaries of results from other sources. The next time I teach graduate-level cosmology I vill certainly use this book, and I look forward to the opportunity.'

Weinberg's unique talents fill an important gap in the scientific literature by providing another thorough, rigorous, and yet very enjoyable and casy-to-read textbook that is bound to become another classic. Weinberg's gigantic effort in organizing and presenting a huge body of experimental and theoretical achievements in this tapidly growing field is a great contribution to the astroparticle community and to fundamental science—from the beginning graduate student to the most advanced practitioner.⁴ Gabriele Veneziano, CERN, Geneva

www.oup.com

Contents

1 THE EXPANSION OF THE UNIVERSE

1.1 Spacetime geometry

Robertson–Walker metric □ Co-moving coordinates □ Proper distances □ Momentum decay □ Spatial geodesics □ Number conservation □ Energy & momentum conservation \Box Cold matter, hot matter, vacuum energy \Box Global geometry & topology

1.2 The cosmological redshift

Emission time vs. radial coordinate
Redshifts & blueshifts
Hubble constant □ Discovery of expansion □ Changing redshifts

1.3 Distances at small redshift: The Hubble constant

Trigonometric parallax

Proper motions
Apparent luminosity: Main sequence, red clump stars, RR Lyrae stars, eclipsing binaries, Cepheid variables
Tully-Fisher relation
Faber-Jackson relation
Fundamental Plane □ Type Ia supernovae □ Surface brightness fluctuations □ Result for Hubble constant

1.4 Luminosity distances and angular diameter distances

Luminosity distance
Deceleration parameter
Jerk & snap
Angular diameter distance

1.5 Dynamics of expansion

Einstein field equations D Friedmann equation D Newtonian derivation □ Critical density □ Flatness problem □ Matter-dominated expansion □ Radiation-dominated expansion D Vacuum-dominated expansion De Sitter model $\Box \Omega_M, \Omega_R, \Omega_\Lambda \Box$ Age of expansion \Box Luminosity distance formula □ Future expansion □ Historical note: cosmological constant □ Historical note: steady state model

1.6 Distances at large redshifts: Accelerated expansion

Discovery of accelerated expansion \Box Newtonian interpretation \Box Grav dust? □ Discovery of early deceleration □ Other effects □ Equation of state parameter $w \Box X$ -ray observations \Box The cosmological constant problems

1.7 Cosmic expansion or tired light?

Surface brightness test
Supernova decline slowdown

1.8 Ages

Heavy element abundance
Main sequence turn-off
Age vs. redshift

45

31

34

-					

1.9	M	asses
-----	---	-------

Virialized clusters of galaxies: $\Omega_M \square$ X-ray luminosity of clusters of galaxies: Ω_B / Ω_M

1.10 Intergalactic absorption

Optical depth \Box Resonant absorption \Box 21 cm absorption \Box Lyman α absorption
Gunn-Peterson trough Alcock-Paczyński analysis

1.11 Number counts

Number vs. z and $\ell \Box$ Evolution \Box Radio source surveys

1.12 Ouintessence

Scalar field theories □ Power-law potential □ Tracker solution □ Twoparameter models

1.13 Horizons

Particle horizon
Event horizon

2 THE COSMIC MICROWAVE RADIATION BACKGROUND

2.1 Expectations and discovery of the microwave background

Black body radiation

Early suggestions

Discovery

Rayleigh-Jeans formula □ CN absorption lines □ Balloons & rockets □ COBE & FIRAS □ Energy density □ Number density □ Effect on cosmic rays

2.2 The equilibrium era

Entropy per baryon
Radiation-matter equality
Energy decoupling

2.3 Recombination and last scattering

Maxwell–Boltzmann distribution \Box Saha formula \Box Delay of n = 2 to $n = 1 \square$ Peebles analysis \square Lyman α escape probability \square Rate equation \square Fractional ionization D Opacity D Jones-Wyse approximation

2.4 The dipole anisotropy

Angular dependence of temperature D U2 discovery D COBE & WMAP measurements
Kinematic quadrupole

2.5 The Sunyaev-Zel'dovich effect

Kompaneets equation
Spectrum shift
Use with X-ray luminosity

2.6 Primary fluctuations in the microwave background: A first look 135

Partial-wave coefficients $a_{\ell m} \Box$ Multipole coefficients $C_{\ell} \Box$ Cosmic variance □ Sachs-Wolfe effect □ Harrison-Zel'dovich spectrum □ Doppler fluctuations
Intrinsic temperature fluctuations
Integrated Sachs-Wolfe effect COBE observations

98

109

101

113

129

3 THE EARLY UNIVERSE	149
3.1 Thermal history	149
Entropy density	☐ Time bling □ emical
3.2 Cosmological nucleosynthesis	159
Neutron-proton conversion \Box Equilibrium nuclear abundar Deuterium bottleneck \Box Helium abundance \Box Deuterium abund He ³ abundance \Box Lithium abundance $\Box \Omega_B h^2$	ces □ ance □
3.3 Baryonsynthesis and Leptonsynthesis	173
Sakharov conditions Delayed decay Electroweak nonconserva Leptogenesis Affleck-Dine mechanism Equilibrium baryonsyr	ation □ thesis
3.4 Cold dark matter	185
The bullet cluster \Box Leftover WIMP abundance \Box Sparticles \Box searches \Box Annihilation γ rays \Box Axions & axinos	WIMP
4 INFLATION	201
4.1 Three puzzles	202
Flatness Horizons Monopoles	
4.2 Slow-roll inflation	208
Bubble formation □ New inflation □ Slow-roll conditions □ Po potential □ Exponential potential □ Reheating	wer-law
4.3 Chaotic inflation, eternal inflation	216
Condition for eternal inflation Condition for chaotic inflation	
5 GENERAL THEORY OF SMALL FLUCTUATIONS	219
5.1 Field equations	219
Perturbed Ricci tensor □ Perturbed energy-momentum tensor □ modes □ Vector modes □ Tensor modes	Scalar
5.2 Fourier decomposition and stochastic initial conditions	228
Plane wave solutions Stochastic parameters Correlation fund Helicity decomposition	tions 🗆
5.3 Choosing a gauge	235
Gauge transformations □ Newtonian gauge □ Synchronous g Conversion □ Other gauges	auge 🗆

312

329

329

Boltzmann equations
Neutrino pressure, density, anisotropic inertia Neutrino line-of-sight solutions
Gravitational field equations
Initial conditions 6.2 Scalar perturbations - the hydrodynamic limit 274

Hydrodynamic & field equations
Adiabatic initial conditions
Non-

adiabatic modes
Long & short wavelengths 6.3 Scalar perturbations - long wavelengths Evolution far outside horizon D Evolution in matter-dominated era 6.4 Scalar perturbations - short wavelengths Evolution in radiation-dominated era
Evolution deep inside horizon Fast & slow modes □ Matching

6.5 Scalar perturbations - interpolation & transfer functions Exact solution for $\bar{\rho}_R = 0 \square$ Transfer functions \square Barvon density & damping effects

6.6 Tensor perturbations Gravitational field equations
Photon Boltzmann equations
Photon

source functions D Photon anisotropic inertia D Photon line-of-sight solution D Neutrino Boltzmann equations D Neutrino anisotropic inertia D Neutrino line-of-sight solutions

Evolution without damping
Transfer functions D Effect of damping

7 ANISOTROPIES IN THE MICROWAVE SKY

7.1 General formulas for the temperature fluctuations

Line-of-sight formula
Rearrangement of scalar temperature fluctuation □ Integrated Sachs–Wolfe effect □ Sudden decoupling approximation □ Re-derivation following photon trajectories
Gauge invariance

5.4 Conservation outside the horizon

The quantities \mathcal{R} and $\zeta \Box A$ conservation theorem \Box Conservation for isolated components

Contents

6 EVOLUTION OF COSMOLOGICAL FLUCTUATIONS 257

6.1 Scalar perturbations - kinetic theory

perturbation δn^{ij} \Box Photon dimensionless intensity matrix J_{ii} \Box Photon Boltzmann equations D Photon source functions D Photon pressure, density, anisotropic inertia D Photon line-of-sight solutions D Neutrino number density perturbation δn_{ν} \Box Neutrino dimensionless intensity $J \Box$ Neutrino

Cold dark matter D Baryonic plasma D Photon number density matrix

258

303

282

Contents

343

362

403

403

421

7.2 Temperature multipole coefficients: Scalar modes

General formula \Box Large ℓ approximation \Box Calculation of form factors \Box Silk & Landau damping \Box Comparison with numerical codes \Box Balloon & ground-based observations \Box WMAP \Box Results for cosmological parameters

7.3 Temperature multipole coefficients: Tensor modes

General formula \Box Calculation of gravitational wave amplitude \Box Calculation of source function \Box Large ℓ approximation \Box Sudden decoupling approximation \Box Numerical results

7.4 Polarization

Stokes parameters \Box Spherical harmonics of spin $\pm 2 \Box$ Space-inversion properties $\Box E$ and *B* polarization \Box Scalar modes: general formula \Box Scalar modes: large ℓ approximation \Box Scalar modes: numerical results \Box Scalar modes: observations \Box Tensor modes: general formula \Box Tensor modes: large ℓ approximation \Box Tensor modes: numerical results \Box Correlation functions

8 THE GROWTH OF STRUCTURE

8.1 Linear perturbations after recombination

Hydrodynamic and field equations \Box Factorization of perturbations \Box Effect of vacuum energy \Box Power spectral function $P(k) \Box$ Correlation function \Box Direct measurement of $P(k) \Box$ Rms fluctuation $\sigma_R \Box$ Measurements of $P(k) \Box$ Baryon acoustic oscillations \Box Cosmic variance in measuring P(k)

8.2 Nonlinear growth

Spherically symmetric collapse \square Calculation of $\sigma_R \square$ Press–Schechter mass function

8.3 Collapse of baryonic matter427 Jeans mass □ Continuity & Euler equations □ Power-law solutions □ Critical wave number for baryon collapse

9 GRAVITATIONAL LENSES	433
9.1 Lens equation for point masses	433
Derivation of lens equation Image separation Einstein ring	
9.2 Magnification: Strong lensing and microlensing	436

Image luminosity \Box Conservation of surface brightness \Box Effective radius for strong lensing \Box Number counts \Box De Sitter model \Box Einstein–de Sitter model \Box Lens survey \Box Microlensing observations

-					
				-	
	1				s
			۰.		

9.3 Extended lenses	443
Isothermal spheres □ Lens equation □ Lens luminosity □ □ Surveys	Number counts
9.4 Time delay	447
Geometrical delay Potential delay Observations	
9.5 Weak lensing	452
Calculation of deflection \Box Shear matrix \Box Ellipse matri matrix \Box Shear field $\kappa \Box$ Multipole coefficients \Box Large ℓ a Measurement of $P(k) \Box$ Correlation functions \Box Shear su	x Mean shear approximation rveys
9.6 Cosmic strings	467
Calculation of deflection A string suspect	

10 INFLATION AS THE ORIGIN OF COSMOLOGICAL FLUCTUATIONS

10.1 Scalar fluctuations during inflation

Scalar field action \Box Field, density, pressure, and velocity perturbations \Box Field equations \Box WKB early-time solution \Box Fourier decomposition \Box Commutation relations \Box Bunch–Davies vacuum \Box Gaussian statistics \Box Curvature perturbation $\mathcal{R} \Box$ Mukhanov–Sasaki equation \Box Limit \mathcal{R}_q^o outside horizon \Box Number of *e*-foldings after horizon exit \Box Exponential potential \Box Measurement of spectral index & fluctuation strength \Box Values of exponential potential parameters \Box Justification of simple action

10.2 Tensor fluctuations during inflation

Gravitational field equation \Box WKB early-time solution \Box Fourier decomposition \Box Commutation relations \Box Scalar/tensor ratio $r \Box$ Observational bounds on r

10.3 Fluctuations during inflation: The slow-roll approximation

Parameters ϵ and $\delta \square$ Slow-roll approximation \square Spectral index and fluctuation strength \square Observational constraints on potential \square Number of *e*-foldings after horizon exit

10.4 Multifield inflation

Gaussian, adiabatic, scale-invariant, & weak fluctuations \Box Thermal equilibrium after inflation \Box Evolution equations \Box WKB early-time solution \Box Vielbeins \Box Commutation relations \Box Slow-roll conditions $\Box \mathcal{R}$ after horizon exit \Box What we have learned about inflation

497

488

485

Contents

APPENDICES

B Review of Ceneral Relativity 511
D. Review of General Relativity 511
C. Energy Transfer between Radiation and Electrons 53
D. The Ergodic Theorem 53
E. Gaussian Distributions 54
F. Newtonian Cosmology 54.
G. Photon Polarization 54
H. The Relativistic Boltzmann Equation 55
GLOSSARY OF SYMBOLS 56
ASSORTED PROBLEMS 56
AUTHOR INDEX 57.
SUBJECT INDEX 58