
How can actuaries best equip themselves for the products and risk structures of the future? In this ground-breaking textbook, three leaders in actuarial science give a modern perspective on life contingencies.

The book begins with actuarial models and theory, emphasizing practical applications using computational techniques. The authors then develop a more contemporary outlook, introducing multiple state models, emerging cash flows and embedded options. This expanded edition contains more examples and exercises designed to help with exam preparation as well as developing up-to-date expertise. There are brand new sections and chapters on discrete time Markov processes, on models involving joint lives and on Universal Life insurance and participating traditional insurance.

Balancing rigour with intuition, and emphasizing applications, this textbook is ideal for university courses, for qualified actuaries wishing to renew and update their skills and for individuals preparing for the professional actuarial examinations of the Society of Actuaries or Institute and Faculty of Actuaries. The book covers the entire SOA MLC syllabus and will be especially valuable for students preparing for the new, long answer exam questions.

'The book is well written, well organized, and easy to read. It may be an excellent textbook for both undergraduate and graduate programmes in actuarial science. It is also a rich source of useful information for practitioners of the actuarial profession and financial risk managers who seek a practical and inspiring guide to liability cash flow modelling and valuation.'

Scandinavian Actuarial Journal

781107"044074

Contents

Pre	face to t	he second edition	page xvii
1		oduction to life insurance	1
	1.1	Summary	1
	1.2	Background	1
	1.3	Life insurance and annuity contracts	3
		1.3.1 Introduction	3
		1.3.2 Traditional insurance contracts	4
		1.3.3 Modern insurance contracts	6
		1.3.4 Distribution methods	7
		1.3.5 Underwriting	8
		1.3.6 Premiums	10
		1.3.7 Life annuities	11
	1.4	Other insurance contracts	12
	1.5	Pension benefits	12
		1.5.1 Defined benefit and defined contribution	12
		1.5.2 Defined benefit pension design	13
	1.6	Mutual and proprietary insurers	13
	1.7	Typical problems 🧉	14
	1.8	Notes and further reading	15
	1.9	Exercises	15
2	Surv	ival models	17
	2.1	Summary	17
	2.2	The future lifetime random variable	17
	2.3	The force of mortality	21
	2.4	Actuarial notation	26
	2.5	Mean and standard deviation of T_x	28

	- 4 -
Conter	IIS

2.6	Curtate future lifetime	32
	2.6.1 K_x and e_x	32
	2.6.2 The complete and curtate expected future	
	lifetimes, $\stackrel{\circ}{e}_x$ and e_x	34
2.7	Notes and further reading	34
2.8	Exercises	36
Life t	tables and selection	41
3.1	Summary	41
3.2	Life tables	41
3.3	Fractional age assumptions	44
	3.3.1 Uniform distribution of deaths	44
	3.3.2 Constant force of mortality	48
3.4	National life tables	49
3.5	Survival models for life insurance policyholders	52
3.6	Life insurance underwriting	54
3.7	Select and ultimate survival models	55
3.8	Notation and formulae for select survival models	58
3.9	Select life tables	59
3.10	Some comments on heterogeneity in mortality	65
3.11	Mortality trends	67
3.12	Notes and further reading	69
3.13	Exercises	70
Insur	rance benefits	76
4.1	Summary	76
4.2	Introduction	76
4.3	Assumptions	77
4.4	Valuation of insurance benefits	78
	4.4.1 Whole life insurance: the continuous case, \bar{A}	x 78
	4.4.2 Whole life insurance: the annual case, A_x	81
	4.4.3 Whole life insurance: the $1/m$ thly case, $A_x^{(m)}$) 82
	4.4.4 Recursions	84
	4.4.5 Term insurance	88
	4.4.6 Pure endowment	90
	4.4.7 Endowment insurance	90
	4.4.8 Deferred insurance benefits	93
4.5	Relating \bar{A}_x , A_x and $A_x^{(m)}$	94
	4.5.1 Using the uniform distribution of deaths	
	assumption	95
	4.5.2 Using the claims acceleration approach	96
4.6	Variable insurance benefits	98

	Contents	iX
4.7	Functions for select lives	102
4.8	Notes and further reading	103
4.9	Exercises	103
Annu	ities	109
5.1	Summary	109
5.2	Introduction	109
5.3	Review of annuities-certain	110
5.4	Annual life annuities	110
	5.4.1 Whole life annuity-due	111
	5.4.2 Term annuity-due	113
	5.4.3 Whole life immediate annuity	115
	5.4.4 Term immediate annuity	115
5.5	Annuities payable continuously	116
	5.5.1 Whole life continuous annuity	116
	5.5.2 Term continuous annuity	118
5.6	Annuities payable 1/mthly	119
	5.6.1 Introduction	119
	5.6.2 Whole life annuities payable $1/m$ thly	120
	5.6.3 Term annuities payable $1/m$ thly	121
5.7	Comparison of annuities by payment frequency	122
5.8	Deferred annuities	124
5.9	Guaranteed annuities	127
5.10	Increasing annuities	128
	5.10.1 Arithmetically increasing annuities	129
	5.10.2 Geometrically increasing annuities	130
5.11	Evaluating annuity functions	131
	5.11.1 Recursions	131
	5.11.2 Applying the UDD assumption	132
	5.11.3 Woolhouse's formula	133
5.12	Numerical illustrations	136
5.13	Functions for select lives	137
5.14	Notes and further reading	138
5.15	Exercises	138
Prem	ium calculation	144
6.1	Summary	144
6.2	Preliminaries	144
6.3	Assumptions	146
6.4	The present value of future loss random variable	146
6.5	The equivalence principle	147
	6.5.1 Net premiums	147

1		
Cor	1101	ntc
CUI	uci	110

	6.6	Gross premiums	151
	6.7	Profit	157
	6.8	The portfolio percentile premium principle	163
	6.9	Extra risks	167
		6.9.1 Age rating	167
		6.9.2 Constant addition to μ_x	167
		6.9.3 Constant multiple of mortality rates	169
	6.10	Notes and further reading	170
	6.11	Exercises	171
7	Policy	y values	178
	7.1	Summary	178
	7.2	Assumptions	179
	7.3	Policies with annual cash flows	179
		7.3.1 The future loss random variable	179
		7.3.2 Policy values for policies with annual cash flows	185
		7.3.3 Recursive formulae for policy values	192
		7.3.4 Annual profit by source	198
		7.3.5 Asset shares	202
	7.4	Policy values for policies with cash flows at $1/m$ thly	
		intervals	205
		7.4.1 Recursions	206
		7.4.2 Valuation between premium dates	207
	7.5	Policy values with continuous cash flows	209
		7.5.1 Thiele's differential equation	209
		7.5.2 Numerical solution of Thiele's differential	
		equation	212
	7.6	Policy alterations	215
	7.7	Retrospective policy values	220
		7.7.1 Prospective and retrospective valuation	220
		7.7.2 Defining the retrospective net premium policy	
		value	222
	7.8	Negative policy values	225
	7.9	Deferred acquisition expenses and modified premium	
		reserves	226
	7.10	Notes and further reading	231
	7.11	Exercises	231
8	Mult	iple state models	242
	8.1	Summary	242
	8.2	Examples of multiple state models	242
		8.2.1 The alive–dead model	243

		Contents	XI
		8.2.2 Term insurance with increased benefit on	
		accidental death	244
		8.2.3 The permanent disability model	245
		8.2.4 The disability income insurance model	245
	8.3	Assumptions and notation	246
	8.4	Formulae for probabilities	250
		8.4.1 Kolmogorov's forward equations	254
	8.5	Numerical evaluation of probabilities	254
	8.6	Premiums	258
	8.7	Policy values and Thiele's differential equation	261
		8.7.1 The disability income insurance model	262
		8.7.2 Thiele's differential equation – the general case	266
	8.8	Multiple decrement models	267
	8.9	Multiple decrement tables	271
		8.9.1 Fractional age assumptions for decrements	273
	8.10	Constructing a multiple decrement table	275
1.41		8.10.1 Deriving independent rates from dependent rates	275
280		8.10.2 Deriving dependent rates from independent rates	277
	8.11	Comments on multiple decrement notation	279
	8.12	Transitions at exact ages	279
	8.13	Markov multiple state models in discrete time	284
		8.13.1 The Chapman–Kolmogorov equations	288
		8.13.2 Transition matrices	289
	8.14	Notes and further reading	291
	8.15	Exercises	292
9	Joint	life and last survivor benefits	303
	9.1	Summary	303
	9.2	Joint life and last survivor benefits	303
	9.3	Joint life notation	304
	9.4	Independent future lifetimes	308
	9.5	A multiple state model for independent future	
		lifetimes	314
	9.6	A model with dependent future lifetimes	319
	9.7	The common shock model	325
	9.8	Notes and further reading	328
	9.9	Exercises	328
10	Pensi	on mathematics	334
	10.1	Summary	334
	10.2	Introduction	334
	10.3	The salary scale function	335

0		4	
10	n	t DI	nte
Co	111	ICI	us

	10.4	Setting the DC contribution	339
	10.5	The service table	342
	10.6	Valuation of benefits	351
		10.6.1 Final salary plans	351
		10.6.2 Career average earnings plans	357
	10.7	Funding the benefits	358
	10.8	Notes and further reading	363
	10.9	Exercises	364
1	Yield	curves and non-diversifiable risk	371
	11.1	Summary	371
	11.2	The yield curve	371
	11.3	Valuation of insurances and life annuities	375
		11.3.1 Replicating the cash flows of a traditional	
		non-participating product	377
	11.4	Diversifiable and non-diversifiable risk	378
		11.4.1 Diversifiable mortality risk	379
		11.4.2 Non-diversifiable risk	380
	11.5	Monte Carlo simulation	386
	11.6	Notes and further reading	391
	11.7	Exercises	392
2	Emer	ging costs for traditional life insurance	397
	12.1	Summary	397
	12.2	Introduction	397
	12.3	Profit testing a term insurance policy	399
		12.3.1 Time step	399
		12.3.2 Profit test basis	399
		12.3.3 Incorporating reserves	403
		12.3.4 Profit signature	406
	12.4	Profit testing principles	407
		12.4.1 Assumptions	407
		12.4.2 The profit vector	407
		12.4.3 The profit signature	408
		12.4.4 The net present value	409
		12.4.5 Notes on the profit testing method	409
	12.5	Profit measures	410
	12.6	Using the profit test to calculate the premium	412
	12.7	Using the profit test to calculate reserves	413
	12.8	Profit testing for multiple state models	415
	12.9	Notes	422
	12.10	Exercises	423

		Contents	xiii
13	Parti	cipating and Universal Life insurance	431
	13.1	Summary	431
	13.2	Introduction	431
	13.3	Participating insurance	434
		13.3.1 Introduction	434
		13.3.2 Examples	435
		13.3.3 Notes on profit distribution methods	443
	13.4	Universal Life insurance	444
		13.4.1 Introduction	444
		13.4.2 Key design features	445
		13.4.3 Projecting account values	447
		13.4.4 Profit testing Universal Life policies	448
		13.4.5 Universal Life Type B	449
		13.4.6 Universal Life Type A	455
		13.4.7 No-lapse guarantees	462
		13.4.8 Comments on UL profit testing	463
	13.5	Comparison of UL and whole life insurance policies	464
	13.6	Notes and further reading	464
	13.7	Exercises	465
14	Emer	rging costs for equity-linked insurance	473
	14.1	Summary	473
	14.2	Equity-linked insurance	473
	14.3	Deterministic profit testing for equity-linked insurance	475
	14.4	Stochastic profit testing	486
	14.5	Stochastic pricing	490
	14.6	Stochastic reserving	492
		14.6.1 Reserving for policies with non-diversifiable risk	492
		14.6.2 Quantile reserving	493
		14.6.3 CTE reserving	495
		14.6.4 Comments on reserving	496
	14.7	Notes and further reading	497
	14.8	Exercises	497
15	Optio	on pricing	503
	15.1	Summary	503
	15.2	Introduction	503
	15.3	The 'no-arbitrage' assumption	504
	15.4	Options	505
	15.5	The binomial option pricing model	507
		15.5.1 Assumptions	507
		15.5.2 Pricing over a single time period	507

Co			4
10	nti	on	tc
CO	1110	SIL	w

		15.5.3 Pricing over two time periods	512
		15.5.4 Summary of the binomial model option pricing	
		technique	515
	15.6	The Black–Scholes–Merton model	515
		15.6.1 The model	515
		15.6.2 The Black–Scholes–Merton option pricing	1.768
		formula	517
	15.7	Notes and further reading	529
	15.8	Exercises	529
6	Emb	edded options	532
	16.1	Summary	532
	16.2	Introduction	532
	16.3	Guaranteed minimum maturity benefit	534
		16.3.1 Pricing	534
		16.3.2 Reserving	537
	16.4	Guaranteed minimum death benefit	539
		16.4.1 Pricing	539
		16.4.2 Reserving	541
	16.5	Pricing methods for embedded options	545
	16.6	Risk management	548
	16.7	Emerging costs	550
	16.8	Notes and further reading	558
	16.9	Exercises	559
4	Prob	ability theory	564
	A.1	Probability distributions	564
		A.1.1 Binomial distribution	564
		A.1.2 Uniform distribution	564
		A.1.3 Normal distribution	565
		A.1.4 Lognormal distribution	566
	A.2	The central limit theorem	568
	A.3	Functions of a random variable	569
		A.3.1 Discrete random variables	569
		A.3.2 Continuous random variables	570
		A.3.3 Mixed random variables	571
	A.4	Conditional expectation and conditional variance	572
	A.5	Notes and further reading	573
B	Num	erical techniques	574
	B. 1	Numerical integration	574
		B.1.1 The trapezium rule	574
		B.1.2 Repeated Simpson's rule	575

		Contents	XV
		B.1.3 Integrals over an infinite interval	576
	B.2	Woolhouse's formula	577
	B.3	Notes and further reading	578
С	Simulation		579
	C.1	The inverse transform method	579
	C.2	Simulation from a normal distribution	580
		C.2.1 The Box–Muller method	580
		C.2.2 The polar method	581
	C.3	Notes and further reading	581
D	Table	es	582
References		589	
Index			592