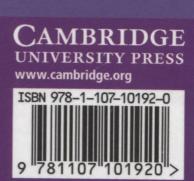


"This is an extraordinary book, really one of a kind. Written by two supreme experts, but aimed at the level of an undergraduate or a curious amateur, it emphasizes the really powerful ideas, with the bare minimum of math notation and the maximum number of elegant and suggestive visuals. The authors explain why this legendary problem is so beautiful, why it is difficult, and why you should care."

- Will Hearst, Hearst Corporation


"This book is a soaring ride, starting from the simplest ideas and ending with one of the deepest unsolved problems of mathematics. Unlike in many popular math books puffed up with anecdotal material, the authors here treat the reader as seriously interested in prime numbers and build up the real math in four stages with compelling graphical demonstrations revealing in deeper and deeper ways the hidden music of the primes. If you have ever wondered why so many mathematicians are obsessed with primes, here's the real deal."

- David Mumford, Brown University

Barry Mazur is Gerhard Gade University Professor at Harvard University. He is the author of *Imagining Numbers* (particularly the square root of minus fifteen) and coeditor, with Apostolos Doxiadis, of Circles Disturbed: The Interplay of Mathematics and Narrative.

William Stein is Professor of Mathematics at the University of Washington. Author of *Elementary Number Theory: Primes, Congruences, and Secrets: A Computational Approach*, he is also the founder of the Sage mathematical software project.

Cover images: (front cover background) courtesy of William Stein; (back cover portrait) Bernhard Riemann (1826–1866), copyright © Archive of the Mathematisches Forschungsinstitut Oberwolfach Cover design by James F. Brisson

Preface PART I. The Riemann Hypothesis		page vii
		1
1	Thoughts About Numbers	iomoriosidi ₃
2	What are Prime Numbers?	6
3	"Named" Prime Numbers	Red III
4	Sieves	13
5	Questions About Primes	16
6	Further Questions About Primes	19
7	How Many Primes are There?	23
8	Prime Numbers Viewed from a Distance	28
9	Pure and Applied Mathematics	30
10	A Probabilistic First Guess	32
11	What is a "Good Approximation"?	36
12	Square Root Error and Random Walks	38
13	What is Riemann's Hypothesis?	40
14	The Mystery Moves to the Error Term	42
15	Cesàro Smoothing	43
16	A View of $ \text{Li}(X) - \pi(X) $	45
17	The Prime Number Theorem	47
18	The Staircase of Primes	51

19	Tinkering with the Staircase of Primes	53
20	Computer Music Files and Prime Numbers	56
21	The Word "Spectrum"	62
22	Spectra and Trigonometric Sums	64
23	The Spectrum and the Staircase of Primes	66
24	To Our Readers of Part I	67
PA	RT II. Distributions	69
25	Slopes of Graphs That Have No Slopes	71
26	Distributions	77
27	Fourier Transforms: Second Visit	82
28	Fourier Transform of Delta	85
29	Trigonometric Series	87
30	A Sneak Preview of Part III	89
PAI	RT III. The Riemann Spectrum of the Prime Num	bers 95
31	On Losing No Information	97
32	From Primes to the Riemann Spectrum	99
33	How Many θ_i 's are There?	104
34	Further Questions About the Riemann Spectrum	106
35	From the Riemann Spectrum to Primes	108
PAI	RT IV. Back to Riemann	111
36	Building $\pi(X)$ from the Spectrum	113
37	As Riemann Envisioned It	119
38	Companions to the Zeta Function	125
Endnotes Index		129 141