xv

xix

1

CONTENTS

Preface About the Authors

PART 1 Introduction

1	Introduction	3
	A Layout of Incrementally-Related SEMs: An Organizing Guide	3
	Illustrative Example 1.1: Examining Alternative Growth	
	Curve Models	4
	Adolescents' Internalizing Symptoms (IS) Trajectories	9
	Datasets used in Illustrations	9
	Measures	10
2	Latent Growth Curves	13
	Introduction	13
	Growth Curve Modeling	13
	Conventional Latent Growth Curve Models (LGCM)	14
	Illustrative Example 2.1: Examining the Longitudinal Covariance	
	Pattern of Indicators	19
	Estimating an Unconditional Linear Latent Growth Curve	
	Model (LGCM) Using Mplus	20
	Illustrative Example 2.2: Estimating a Linear Latent Growth	
	Curve Model (LGCM)	20

Curvilinear Growth Curve Modeling (i.e., A Quadratic	
Growth Curve Model)	20
Illustrative Example 2.3: Estimating a Quadratic Latent Growth	
Curve Model (LGCM)	24
Model Fit Indices	27
Comparing Nested Models	30
Illustrative Example 2.4: Nested Model Comparison Between	
Linear and Quadratic Models	30
Illustrative Example 2.5: Nested Model Comparison Between	
Models with and Without Correlated Errors	31
Illustrative Example 2.6: Non-nested Model Comparison Between	
Linear and Piecewise Models	31
Adding Covariates to an Unconditional Model	33
Illustrative Example 2.7: Adding a Predictor and Outcome	
to a Linear LGCM	35
Illustrative Example 2.8: Adding a Predictor and Outcome	
to a Quadratic LGCM	36
Methodological Concerns in Longitudinal Analysis:	
Why Growth Curves?	38
The Need to Preserve the Continuity of Change	38
The Need to Investigate Different Growth Parameters	39
The Need to Incorporate Growth Parameters as Either Predictors or	
Outcomes in the Same Model	39
The Need to Incorporate Time-Varying Predictors	40
Limitations	40
Beyond Latent Growth Curve Modeling	41
Revisiting the Layout of Models: Figures 1.1, 1.2, and 1.3	41
First-Order Structural Equation Models	42
Second-Order Growth Curve Modeling	42
Growth Mixture Modeling	42
Chapter 2 Exercises	43
Latent Growth Curves	
Longitudinal Confirmatory Factor Analysis and	
Curve-of-Factors Growth Curve Models	47
Introduction (MOOD) asked a synch dysorid asset a language of	47
Confirmatory Factor Analysis (CFA) (Step One)	47
Specification of a Simple CFA	48
CFA Model Identification	50
Scale Setting in a CFA	50
Longitudinal Confirmatory Factor Analysis (LCFA):	
Model Specification (Step Two)	51

	A Second-Order Growth Curve: A Curve-of-Factors	
	Model (Step Three)	51
	Specification of a Curve-of-Factors Model (CFM)	51
	Why Analyze a Curve-of-Factors Model? Improvements	
	Over a Conventional LGCM	54
	Chapter 3 Exercises	57
ł	Estimating Curve-of-Factors Growth Curve Models	59
	Introduction bouched testing M to totalbert totalC a second to a	59
	Steps for Estimating a Curve-of-Factors Model (CFM)	59
	Investigating the Longitudinal Correlation Patterns of Subdomain	
	Indicators (Step One)	60
	Illustrative Example 4.1: Examining the Longitudinal Correlation	
	Patterns Among Indicators	60
	Performing an Unconstrained Longitudinal Confirmatory Factor Analysis	
	(LCFA) (Step Two)	62
	Illustrative Example 4.2: Longitudinal Confirmatory Factor Analysis	
	(LCFA) Using Mplus	62
	Measurement Invariance of the LCFA Model (Step Three)	70
	Illustrative Example 4.3: Systematic Incremental Testing Sequences for	
	Assessing Measurement Invariance	71
	Illustrative Example 4.4: Longitudinal Confirmatory Factor Analysis	
	(LCFA) with "Trait" Factors (IT model)	81
	Estimating a Second-Order Growth Curve: A Curve-of-Factors	
	Model (CFM) (Step Four)	84
	Illustrative Example 4.5: Estimating a Curve-of-Factors Model (CFM)	85
	Scale Setting Approaches and Second-Order Growth Model	
	Parameters (Curve-of-Factors Model, CFM)	90
	Marker Variable Approach	90
	Illustrative Example 4.6: Using the Marker Variable Approach for	
	CFA Scale Setting	90
	Fixed Factor Approach	94
	Illustrative Example 4.7: Using the Fixed Factor Scale Setting	
	Approach in a CFA	94
	Effect Coding Approach	96
	Illustrative Example 4.8: Using the Effect Coding Scale Setting	
	Approach in a CFA	98
	Adding Covariates to a Curve-of-Factors Model (CFM)	100
	Time-Invariant Covariate (TIC) Model	100
	Illustrative Example 4.9: Adding a Time-Invariant Covariate (TIC)	
	as a CFM Predictor	102

	C -	-	10	-	
X	Co)n	ιe	n	S

	Illustrative Example 4.10: Adding a Multiple-Indicator Latent Factor	
	as a CFM Predictor	104
	Illustrative Example 4.11: Predicting Both Second-Order Growth	
	Parameters and First-Order Latent Factors	106
	Illustrative Example 4.12: Predicting Distal Outcomes of	
	Second-order Growth Factors	108
	Time-Varying Covariate (TVC) Model	110
	Illustrative Example 4.13: Incorporating a Time-Varying	
	Covariate as a Direct Predictor of Manifest Indicators	111
	Illustrative Example 4.14: Incorporating a Time-Varying	
	Covariate as a Parallel Process	115
	Chapter 4 Exercises	118
	Illumnive Example 415 Etchning the Longinalina Conductor	
6	Extending a Parallel Process Latent Growth Curve	
,	Model (PPM) to a Factor-of-Curves Model (FCM)	122
	Introduction	122
	Parallel Process Latent Growth Curve Model (PPM)	122
	Estimating a Parallel Process Model (PPM)	124
	Correlation of Measurement Errors in a PPM	126
	Influence of Growth Factors of One Subdomain on the Growth	
	Factors of Other Subdomains	128
	Modeling Sequentially Contingent Processes over Time	132
	Extending a Parallel Process Latent Growth Curve Model	39
	(PPM) to a Factor-of-Curves Growth Curve Model (FCM)	134
	Second-Order Growth Factors	136
	Chapter 5 Exercises	141
	Chapter 5 Exercises	
	Parameters (Curve-of-Parton Madal, CRM) Unstantik who and	
6	Estimating a Factor-of-Curves Model (FCM) and	1.10
	Adding Covariates	142
	Introduction	142
	Estimating a Factor-of-Curves Model (FCM)	142
	Investigating the Longitudinal Correlation Patterns	112
	Among Repeated Measures of Each Subdomain (Step One)	143
	Illustrative Example 6.1: Investigating the Longitudinal	
	Correlation Patterns Among Repeated Measures of	1 1 1
	Each Subdomain	144
		144
		1.1.4
	Growth Curve Model (PPM)	144
	Estimating a Factor-of-Curves Model (FCM) (Step Three)	146

1.

٠

	Illustrative Example 6.3: Estimating a Factor-of-Curves	1 10
	Model (FCM) soll a soll active and Mini T signification of the Mini Mini Mini Mini Mini Mini Mini Min	148
	Illustrative Example 6.4: Comparing Two Competing Models Empirically	152
	Estimating a Conditional FCM (Step Four)	152
		155
	to a FCM	154
	Illustrative Example 6.6: Incorporating a Latent Distal Outcome	
	into a FCM	156
	Illustrative Example 6.7: Incorporating a Time-Varying	
	Covariate (TVC) as a Direct Predictor	160
	Illustrative Example 6.8: Incorporating a Time-Varying	
	Predictor as a Parallel Process	164
	A Multiple-Group FCM (Multi-Group Longitudinal Modeling)	165
	Illustrative Example 6.9: Estimating a FCM for Multiple Groups	167
	Multivariate FCM	172
	Illustrative Example 6.10: Estimating a Multivariate FCM	174
	Model Selection: Factor-of-Curves vs. Curve-of-Factors	177
	Illustrative Example 6.11: Empirically Comparing CFM and	
	FCM Approaches	179
	Combining a CFM and a FCM: A Factor-of-Curves-of-Factors	
	(FCF) Model	182
	Illustrative Example 6.12: Estimating a Factor-of-Curves-	
	of-Factors (FCF) Model	183
	Chapter 6 Exercises	185
DAL	libustrative Example 8.4: Incorporating a Continuous 2 78	
		189
7	An Introduction to Growth Mixture Models (GMMs)	191
	Introduction	191
	A Conventional Latent Growth Curve Model (LGCM)	192
	Potential Heterogeneity in Individual Trajectories	192
	Growth Mixture Modeling (GMM)	195
	Latent Class Growth Analysis (LCGA): A Simplified GMM	196
	Specifying a Growth Mixture Model (GMM)	197
	Specifying Trajectory Classes: Class-Specific Equations	199
	Specifying a Latent Class Growth Analysis (LCGA)	199
	Building A Growth Mixture Model (GMM) Using Mplus	201
	Specify a Traditional Growth Curve Model (LGCM) (Step One)	201

8

Estimating a Latent Class Growth Analysis (LCGA) (Step Two)	202
Illustrative Example 7.1: Mplus Syntax for a Latent OFD boom	
Class Growth Analysis (LCGA)	204
Specifying a Growth Mixture Model (GMM) (Step Three)	204
Illustrative Example 7.2: Mplus Syntax for a	
Growth Mixture Model (GMM)	205
Addressing Estimation Problems (Step Four)	206
Illustrative Example 7.3: A Non-Normal Distribution	207
Selecting the Optimal Class Model (Enumeration Indices) (Step Five)	213
Illustrative Example 7.4: Identifying the Optimal Model	216
Summary of a Model Building Strategy	221
Chapter 7 Exercises	223
Predictor as a Parallel Process	
Estimating a Conditional Growth Mixture Model (GMM)	227
Introduction	227
Growth Mixture Models: Predictors and Distal Outcomes	228
The One-Step Approach to Incorporating Covariates into a GMM	229
Predictors of Latent Classes (Multinomial Regression)	229
Illustrative Example 8.1: Incorporating a Time-Invariant	
Predictor into a GMM	230
Predictors of Latent Growth Factors Within Classes	230
Illustrative Example 8.2: Adding Within-Class Effects	
of Predictors to a GMM	232
Adding Distal Outcomes of Latent Classes (Categorical and Continuous)	234
Illustrative Example 8.3: Incorporating a Binary Distal	
Outcome into a GMM	234
Illustrative Example 8.4: Incorporating a Continuous	
Distal Outcome into a GMM	236
Uncertainty of Latent Class Membership With the Addition of Covariates	237
The Three-Step Approach: The "Manual" Method	238
Illustrative Example 8.5: The Three-Step Procedure for	
Incorporating Predictor(s)	239
Illustrative Example 8.6: The Three-Step Procedure for	
Incorporating Distal Outcome(s)	243
AUXILIARY Option for the Three-Step Approach	247
Illustrative Example 8.7: Utilizing the Auxiliary Option	
with the 3-Step Approach	247
Illustrative Example 8.8: Utilizing the Auxiliary Option	
with "Lanza Commands"	249
Chapter 8 Exercises	253

Contents xii	ents xiii	ts	ten	n	Co
--------------	-----------	----	-----	---	----

9	Second-Order Growth Mixture Models (SOGMMs)	256
	Introduction	256
	Estimating a Second-Order Growth Mixture Model:	
	A Curve-of-Factors Model (SOGMM of a CFM)	257
	Illustrative Example 9.1: A Second-Order Growth	
	Mixture Model of a CFM (SOGMM-CF)	259
	Illustrative Example 9.2: Avoiding Convergence Problems	265
	Estimating a Second-Order Growth Mixture Model:	
	A Factor-of-Curves Model (SOGMM of a FCM)	272
	Illustrative Example 9.3: A Second-Order Growth	
	Mixture Model of a FCM (SOGMM-FC)	273
	Comparison of Classification Between a First-Order GMM With	
	Composite Measures and Second-Order GMMs	277
	Estimating a Conditional Model (Conditional SOGMM)	279
	The Three-Step Approach (Using the AUXILIARY Option) to	
	Add Predictors of Second-Order Trajectory Classes	281
	Illustrative Example 9.4: Estimating a Conditional SOGMM	
	with Predictors	281
	The Three-Step Approach (Using the AUXILLARY Option) to	
	Add Outcomes of Second-Order Trajectory Classes	285
	Illustrative Example 9.5: Estimating a Conditional	
	SOGMM with Outcomes	285
	Estimating a Multidimensional Growth Mixture Model	
	(MGMM)	287
	Illustrative Example 9.6: Estimating a Multidimensional	
	Growth Mixture Model	289
	Conclusion	291
	Chapter 9 Exercises	293
	and a convestional LGCM can be extended to a second-onler but	
A	nswers to Chapter Exercises	297
A	ithor Index	320
Su	ibiect Index	323

be empl

and similar patterns of insjectories. More importantly, these two LGC24 exten-