

Contents

Preface

Part 1 An introduction to statistical analysis

1 Variables and their measurement 3

- The conceptualization and operationalization of variables 4
- Scales of measurement 7
- Levels of measurement 8
- Univariate, bivariate, and multivariate analysis 11
- Descriptive statistics 14
- Exercises 15

2 Setting up an SPSS data file 17

- Obtaining a copy of SPSS 17
- Alternatives to SPSS 17
- Options for data entry in SPSS 18
- The SPSS Data Editor 19
- Assigning a variable name 21
- Setting the data type 22
- Setting the data width and decimal places 23
- Defining variable labels 23
- Defining value labels 24
- Setting missing values 25
- Setting the column format and alignment 26
- Specifying the level of measurement 27
- Generating variable definitions in SPSS 28
- The SPSS Viewer window 32
- Saving a data file 32
- Data entry 33
- Checking for incorrect values: Data cleaning 35
- Summary 35
- Exercises 35

Part 2 Descriptive statistics: Graphs and tables

3 The graphical description of data 39

- Some general principles 39
- Pie graphs 40
- Bar graphs 42
- Histograms and polygons 44
- Interpreting a univariate distribution 46
- Graphing two variables 47
- Common problems and misuses of graphs 50
- Exercises 53

4 The tabular description of data 55

- Listed data tables 55
- Simple frequency tables 55
- Relative frequency tables: percentages and proportions 57
- Cumulative frequency tables 60
- Class intervals 61
- Percentiles 64
- Frequency tables using SPSS 65
- Valid cases and missing values 67
- Improving the look of tables 67
- Exercises 68

5 Using tables to investigate the relationship between variables: Crosstabulations 70

- Crosstabulations as descriptive statistics 70
- Types of data suitable for crosstabulations 72
- Crosstabulations with relative frequencies 73
- Crosstabulations using SPSS 74
- Interpreting a crosstabulation: The pattern and strength of a relationship 75
- Interpreting a crosstabulation when both variables are at least ordinal 76
- Summary 78
- Exercises 78

6 Measures of association for crosstabulations: Nominal data 81

- Measures of association as descriptive statistics 81
- Measures of association for nominal scales 83
- Properties of lambda 86
- Lambda using SPSS 87
- Limitations on the use of lambda 90
- Standardizing table frequencies 92
- Exercises 93

7 Measures of association for crosstabulations: Ranked data 95

- Data considerations 95
- Concordant pairs 96
- Discordant pairs 97
- Measures of association for ranked data 98
- Gamma 99
- Somers' d 101
- Kendall's tau- b 102
- Kendall's tau- c 102
- Measures of association using SPSS 102
- Summary 107
- Exercises 107

8 Multivariate analysis of crosstabs: Elaboration 110

- Direct relationship 110
- Elaboration of crosstabs using SPSS 112
- Partial gamma 113
- Spurious or intervening relationship? 114
- Conditional relationship 115
- Summary 117
- Exercises 118

Part 3 Descriptive statistics: Numerical measures

9 Measures of central tendency 123

- Measures of central tendency 123
- The mode 124
- The median 125
- The mean 126
- Choosing a measure of central tendency 128
- Measures of central tendency using SPSS: Univariate analysis 129
- Measures of central tendency using SPSS: Bivariate and multivariate analysis 132
- Summary 133
- Exercises 134

10 Measures of dispersion 136

- The range 136
- The interquartile range 137
- The standard deviation 138
- Coefficient of relative variation 140
- Index of qualitative variation 141
- Measures of dispersion using SPSS 145
- Summary 145
- Exercises 146

11 The normal curve 147

- The normal distribution 147
- Using normal curves to describe a distribution 150
- z-scores 151
- Normal curves on SPSS 157
- Exercises 159

12 Correlation and regression 161

- Scatter plots 161
- Linear regression 162
- Pearson's product moment correlation coefficient 169
- Explaining variance: The coefficient of determination 170
- Plots, correlation, and regression using SPSS 172
- The assumptions behind regression analysis 177
- Spearman's rank-order correlation coefficient 179
- Spearman's rho using SPSS 180
- Correlation where the independent variable is categorical: Eta 182
- Summary 183
- Exercises 183

13 Multiple regression 187

- Introduction to multiple regression 188
- Multiple regression with SPSS 190
- Testing for the significance of the multivariate model 193
- Alternative methods for selecting variables in the regression model 193
- Stepwise regression 194
- Extending the basic regression analysis: Adding categorical independent variables 197
- Further extensions to the basic regression analysis: Hierarchical regression 198
- The assumptions behind multiple regression 198
- Exercises 199

Part 4 Inferential statistics: Tests for a mean**14 Sampling distributions 203**

- Random samples 204
- The sampling distribution of a sample statistic 205
- The central limit theorem 210
- Generating random samples using SPSS 210
- Summary 212
- Exercises 212

15 Introduction to hypothesis testing and the one sample *z*-test for a mean 214

- Step 1: State the null and alternative hypotheses 217
- Step 2: Choose the test of significance 219
- Step 3: Describe the sample and derive the *p*-score 220
- Step 4: Decide at what alpha level, if any, the result is statistically significant 222
- Step 5: Report results 224
- What does it mean when we 'fail to reject the null hypothesis'? 226
- What does it mean to 'reject the null hypothesis'? 226
- A two-tail *z*-test for a single mean 227
- The debate over one-tail and two-tail tests of significance 228
- A one-tail *z*-test for a single mean 229
- Summary 230
- Appendix: Hypothesis testing using critical values of the test statistic 230
- Exercises 231

16 The one sample *t*-test for a mean 233

- The Student's *t*-distribution 233
- The one sample *t*-test for a mean 234
- The one sample *t*-test using SPSS 238
- Summary 239
- Exercises 240

17 Inference using estimation and confidence intervals 242

- The sampling distribution of sample means 242
- Estimation 243
- Changing the confidence level 247
- Changing the sample size 250
- Estimation using SPSS 250
- Confidence intervals and hypothesis testing 252
- Exercises 253

18 The two samples *t*-test for the equality of means 255

- Dependent and independent variables 256
- The sampling distribution of the difference between two means 257
- The two samples *t*-test for the equality of means 259
- The two samples *t*-test using SPSS 261
- Exercises 264

19 The *F*-test for the equality of more than two means: Analysis of variance 266

- The one-way analysis of variance *F*-test 269
- ANOVA using SPSS 272
- Summary 277
- Exercises 279

20 The two dependent samples <i>t</i>-test for the mean difference	280
Dependent and independent samples	280
The two dependent samples <i>t</i> -test for the mean difference	281
The two dependent samples <i>t</i> -test using SPSS	283
Exercises	286

Part 5 Inferential statistics: Tests for frequency distributions

21 One sample tests for a binomial distribution	291
--	------------

Data considerations	291
The sampling distribution of sample percentages	292
The <i>z</i> -test for a binomial percentage	293
The <i>z</i> -test for a binomial percentage using SPSS	295
Estimating a population percentage	297
The runs test for randomness	299
The runs test using SPSS	302
Exercises	303

22 One sample tests for a multinomial distribution	305
---	------------

The chi-square goodness-of-fit test	305
Chi-square goodness-of-fit test using SPSS	308
The chi-square goodness-of-fit test for normality	312
Summary	313
Exercises	314

23 The chi-square test for independence	316
--	------------

The chi-square test and other tests of significance	316
Statistical independence	317
The chi-square test for independence	317
The distribution of chi-square	322
The chi-square test using SPSS	323
Problems with small samples	328
Problems with large samples	329
Appendix: hypothesis testing for two percentages	331
Exercises	333

24 Frequency tests for two dependent samples	335
---	------------

The McNemar chi-square test for change	335
The McNemar test using SPSS	337
The sign test	338
Summary	340
Exercises	340

Part 6 Inferential statistics: Other tests of significance

25 Rank-order tests for two or more samples	343
--	------------

Data considerations	343
The rank sum and mean rank as descriptive statistics	344
The <i>z</i> -test for the rank sum for two independent samples	348
Wilcoxon's rank sum <i>z</i> -test using SPSS	352
The Wilcoxon signed-ranks <i>z</i> -test for two dependent samples	353
The Wilcoxon signed-ranks test using SPSS	356

Other non-parametric tests for two or more samples	357
Appendix: the Mann-Whitney <i>U</i> test	358
Exercises	359
26 The <i>t</i>-test for a correlation coefficient	362
The <i>t</i> -test for Pearson's correlation coefficient	362
Testing the significance of Pearson's correlation coefficient using SPSS	364
The <i>t</i> -test for Spearman's rank-order correlation coefficient	365
Testing the significance of Spearman's correlation coefficient using SPSS	366
Testing for significance in multiple regression	367
Exercises	368
Appendix	369
Table A1 Area under the standard normal curve	369
Table A2 Critical values for <i>t</i> -distributions	370
Table A3 Critical values for <i>F</i> -distributions ($\alpha = 0.05$)	371
Table A4 Critical values for chi-square distributions	372
Table A5 Sampling errors for a binomial distribution (95% confidence level)	373
Table A6 Sampling errors for a binomial distribution (99% confidence level)	373
Key equations	374
Glossary	379
Answers	383
Index	397