Contents

1	Per	formar	nce and scalability of parallel algorithms	1			
	1.1	Asymp	ptotics	1			
	1.2	Perfor	mance metrics of sequential algorithms	2			
	1.3	Perfor	mance metrics of parallel algorithms	3			
		1.3.1	Parallel time $T(n, p)$ and speedup $S(n, p)$	3			
		1.3.2	Parallel cost $C(n, p)$, work $W(n, p)$, and efficiency $E(n, p)$	5			
		1.3.3	An example: parallel binary reduction	6			
		1.3.4	Sources of inefficiency of parallel algorithms and ways to eliminate it	7			
	1.4	The so	calability of parallel algorithms	7			
		1.4.1	Improving the cost and efficiency by reducing p	7			
			1.4.1.1 RowSIMPARADD = Row-wise simulation of PARADD	7			
			1.4.1.2 ColSimParAdd $=$ Column-wise simulation of ParAdd \dots	8			
		1.4.2	The scalability problem	9			
		1.4.3	Cost scalability and isoefficiency functions ψ_1, ψ_2	9			
			1.4.3.1 Time scalability \ldots	12			
		1.4.4	Amdahl's law	14			
		1.4.5	Gustafson's law	14			
2	Par	allel a	rchitectures and models	15			
	2.1	Taxon	omies of parallel architectures	15			
		2.1.1	Instruction and data flow taxonomy	16			
			2.1.1.1 Single Instruction Multiple Data (SIMD) architecture model .	16			
			2.1.1.2 Multiple Instruction Multiple Data (MIMD) architecture model	17			
			2.1.1.3 Comparison of SIMD and MIMD, SPMD style, and data par-				
			allel languages	17			
		2.1.2	Memory organization taxonomy	19			
		2.1.3	Interconnection network taxonomy	20			
	2.2	Parallel Random Access Machine model					
		2.2.1	PRAM submodels and the computational power	23			
		2.2.2	Optimal and fully parallel PRAM algorithms	24			
		2.2.3	Simulations of large PRAMs on small PRAMs of the same type	25			
			2.2.3.1 Coarse-grain (cost-preserving) simulation of PRAM algorithms on PRAMs with less processors	25			
			2.2.3.2 Fine-grain (work-preserving) simulation of PRAM algorithms on PRAMs with less processors and Brent's scheduling principle	25			
			2.2.3.3 Simulation of large-memory PRAM algorithms on small-memory PRAMs	26			
		224	Simulation of stronger PRAMs on weaker ones	-9 26			
	2.3	Async	hronous PRAM	$\frac{-9}{29}$			
	2.0	2.3.1	Implementation of barriers	30			

		2.3.2	Simulations of PRAM algorithms on APRAMs	30
		2.3.3	Design of APRAM algorithms	32
3	Inte	rconn	ection networks	34
Ŭ	3.1	Basic	notions and terminology	34
	0.1	Daoro	Letters, alphabets, and strings,	34
			Modulo arithmetics and logarithms.	34
			Graphs and subgraphs.	34
			Node degree and regularity.	35
			Isomorphism and automorphism.	35
			Union and Cartesian product.	35
			Vertex and edge symmetry.	36
			Paths, distances, diameters, and connectivity.	37
			Bipartite and Hamiltonian graphs.	38
			Hierarchical recursivity and scalability of graph topologies.	38
			Digraphs.	38
	3.2	Requi	irements on INs for parallel computers	38
			Small and fixed vertex degree.	38
			Small diameter and small average distance.	38
			Symmetry.	39
			Hierarchical recursivity.	39
			Efficient and incremental scalability.	39
			High connectivity and fault tolerance and small fault diameter or	
			fault average distance	39
			Bisection width: controversial.	39
			Support for efficient routing and collective communication.	39
			Embeddability of and into other topologies.	39
			Hamiltonicity and 2-colorability.	40
	3.3	Direc	t strictly orthogonal networks	40
		3.3.1	Binary hypercube of dimension $n, Q_n \dots \dots \dots \dots \dots \dots \dots$	40
			Basic structural properties.	40
			Routing and distances	41
			Hypercube-based multiprocessor machines.	41
		3.3.2	n -dimensional mesh of dimension sizes $z_1, z_2, \ldots, z_n, M(z_1, z_2, \ldots, z_n)$	42
			Basic structural properties	42
			Routing and distances	43
			Mesh-based multiprocessor machines	43
		3.3.3	<i>n</i> -dimensional torus of dimension sizes $z_1, z_2, \ldots, z_n, K(z_1, z_2, \ldots, z_n) \ldots$	43
			Basic structural properties.	43
			Routing and distances.	44
			Torus-based multiprocessor machines.	44
		3.3.4	Comparisons of hypercubes, meshes, and tori	44
	3.4	Direc	t sparse hypercubic networks	45
		3.4.1	Cube-connected cycles of dimension n , CCC_n	45
			Basic structural properties.	45

			Routing and distances.	46
			CCC-based multiprocessors.	46
		3.4.2 V	Vrapped butterfly of dimension n , wBF_n	46
			Basic structural properties.	46
			Routing and distances.	47
		3.4.3 C	Ordinary butterfly of dimension n , aBF_n	47
			Basic structural properties.	47
			Routing and distances.	47
			Butterfly-based multiprocessors.	47
	3.5	Indirect	(multistage) sparse hypercubic networks	48
		3.5.1 П	Theory of generic binary unidirectional MINs	48
		3.5.2 E	Basic properties of unidirectional binary delta MINs	49
			Deterministic greedy routing in k -D delta binary MINs	50
		3.5.3 F	Rearrangeable unidirectional MINs	50
		3.5.4 E	Bidirectional delta MINs	51
		3.5.5 C	Comparison of direct hypercubic networks and indirect hypercubic MINs	52
4	\mathbf{Em}	beddings	s and simulations of INs	54
	4.1	The emb	oedding problem	54
		4.1.1 T	Basic definitions for static embeddings	54
		4.1.2 S	Some properties and lower bounds	56
	4.2	Embedd	ings into the hypercube	57
		4.2.1 E	Embeddings of paths and cycles	58
		4.2.2 S	Static embeddings of trees	59
		4	1.2.2.1 Complete binary trees	59
			Straightforward embedding based on inorder labelling with $dil = 1.5$.	60
			Nearly optimal embedding of CBT_n into Q_{n+1} .	61
		4	1.2.2.2 Other trees	62
		4.2.3 I	Dynamic randomized embeddings of trees	62
		4.2.4 E	Binary <i>n</i> -level Divide&Conquer (D&C) computations on hypercubes \ldots	63
			Optimal implementation of a pipelined D&C computation on Q_n .	63
			Optimal implementation of a one-wave D&C computation on Q_n .	63
		4.2.5 E	Embeddings of meshes and tori	64
		4.2.6 E	Embeddings of hypercubic networks	65
	4.3	Embedd	lings into meshes and tori	66
		4.3.1 H	Embeddings of 1-D meshes/tori into high-D meshes/tori	66
		4.3.2 E	Embeddings of hypercubes into meshes/tori	67
		4.3.3 H	Embeddings of 2-D tori into 1-D tori	68
		4.3.4 E	Embeddings of 2-D meshes into 2-D meshes	68
		4.3.5 E	Binary <i>n</i> -level D&C computations on 2-D meshes	70
			An efficient implementation of a one-wave D&C computation on	
			2-D square meshes.	71
			An implementation of the pipelined D&C computation on 2-D	.
			square meshes.	71
	4.4	Embedd	lings of linear arrays/cycles into any network	72
	4.5	Embedd	ings into hypercubic topologies	73

			4.5.0.1 Normal hypercube algorithms
5	Rou	ting a	lgorithms and switching techniques 76
	5.1	Archit	ecture of the communication subsystem
		5.1.1	Computing node and router
		5.1.2	Units of communication
		5.1.3	The design space of routing algorithms
			5.1.3.1 Routing decisions: when and where made
			5.1.3.2 Adaptiveness
			5.1.3.3 Minimality
			5.1.3.4 Progressiveness
		5.1.4	Implementation of the routing algorithm
	5.2	Perfor	mance metrics
	5.3	Basic	switching techniques
		5.3.1	Circuit switching (CS)
			Communication latency
		5.3.2	Store-and-forward (SF) switching
			Communication latency
		5.3.3	Virtual cut-through (VCT) switching
			Communication latency
		5.3.4	Wormhole (WH) switching
			Communication latency
		5.3.5	Simplified formulae for the communication latency
			Distance sensitive switching
			Distance insensitive switching
	5.4	Why i	s distance-insensitive switching important?
	5.5	Deadle	ocks
		5.5.1	How to solve the deadlock problem?
		5.5.2	Channel dependence graph 85
		5.5.3	Deadlock avoidance by routing restrictions
			5.5.3.1 Dimension-ordered routing
			5.5.3.2 $Up^*/Down^*$ routing algorithms in irregular networks 87
		5.5.4	Deadlock avoidance based on virtual channels
			5.5.4.1 Deadlock avoidance in tori
6	Pre	fix con	nputations and Eulerian tour techniques 92
	6.1	Parall	el reduction algorithms
	6.2	Parall	el prefix sum (PPS) algorithms
		6.2.1	PPS on EREW PRAMS
		6.2.2	PPS on trees
			Generic PPS on indirect trees
			Generic PPS on direct trees
			PPS on an arbitrary topology
		6.2.3	PPS on hypercubes
		6.2.4	PPS on meshes
			PPS on SF meshes

F

		PPS on WH meshes. $\dots \dots \dots$			
	6.3	Scalability of the PPS			
	6.4	4 Applications of the PPS			
		Packing problem			
		RadixSort			
		Carry-look-ahead parallel binary adder.			
		Tridiagonal system of equations.			
	6.5	Segmented PPS (prefix sum) (SPPS)			
		6.5.1 EREW parallel QuickSort			
	6.6	Prefix computations on linked lists			
		6.6.1 List ranking and PPS on linked lists			
		6.6.2 The problem of scalability of pointer jumping			
		6.6.3 The idea of a scalable list ranking			
	67	Eulerian tour techniques (ETT) in trees			
	0.1	Eulerian graphs 104			
		Adjacency list representation			
		6.7.1 Parallel construction of Eulerian tours and paths in spanning trees 105			
		Eulerian tour construction and the labyrinth rule			
		Transformation of an Eulerian tour into an Eulerian path 106			
		Eulerian path ranking			
		6.7.2 Solving graph problems using the ETT			
		6.7.2 Computing all parents in parallel 106			
		6.7.2.2. Computing all subtree sizes in parallel			
		6.7.2.3 Computing levels of all vertices in parallel			
		6.7.2.4 Preorder numbering 108			
7	Para	allel sorting algorithms 110			
	7.1	Introduction to comparison-based parallel sorting			
	7.2	Indirect sorting networks			
	7.3	Direct sorting networks 111			
		7.3.1 Scalability of sorting algorithms			
	7.4	A naive EREW $PRAM(N, p)$ sorting algorithm			
	7.5	Oblivious sorting and 0-1 sorting theorem 113			
	7.6	Sorting on mesh networks			
		7.6.1 Even-odd transposition sorting (parallel bubble-sort) on 1-D meshes 115			
		Scalability of EOTSORT on $M(p)$			
		7.6.2 SHEARSORT on 2-D meshes			
		Scalability of ShearSort on $M(\sqrt{p},\sqrt{p})$			
		7.6.3 The lower bound on 2-D mesh snake-like sorting			
		7.6.4 Lexicographic sorting on 3-D mesh $M(n, n, n)$			
		Scalability of the 3DSORT algorithm on $M(\sqrt[3]{p},\sqrt[3]{p},\sqrt[3]{p})$ 118			
	7.7	Sorting on hypercubic networks			
		7.7.1 EVENODDMERGESORT (EOMS)			
		7.7.2 EVENEVENMERGESORT (EEMS) 121			
		7.7.3 BITONICMERGESORT (BMS)			

		7.7.4	Implementation of MergeSort algorithms on hypercubic networks	124
			7.7.4.1 Implementation of the EOMS algorithm on a butterfly network	124
			7.7.4.2 Implementation of the EOMS algorithm on a hypercube	125
			7.7.4.3 Implementation of the BMS algorithm on a butterfly and hy-	
			percube	126
		7.7.5	Implementation of the BMS algorithm on PRAMs and 2-D meshes	126
			Scalability of the MESHBMS algorithm.	128
			Complexity and scalability of the 3DSORT algorithm revised	128
8	Peri	mutatio	ons in mesh-based and hypercubic networks	129
	8.1	Permu	tation routing in meshes	129
		8.1.1	Greedy permutation routing in 1-D SF meshes	129
		8.1.2	Greedy permutation routing in SF 2-D meshes	130
		8.1.3	Higher-dimensional meshes	131
		8.1.4	Time-memory trade-off problem for permutation routing in meshes	132
		8.1.5	Randomized permutation routing	132
		8.1.6	Sorting-based permutation routing in meshes	133
		8.1.7	Off-line permutation routing in meshes	134
	8.2	Permu	tation routing in hypercubic MINs	136
		8.2.1	Greedy permutation routing in butterflies	137
			8.2.1.1 Permutations with the worst-case greedy routing	137
			8.2.1.2 Time complexity of the worst-case greedy permutation routing	138
			8.2.1.3 Permutations with optimal greedy routing in butterflies	139
			Packing, spreading, and monotone permutations	139
			Spreading permutations	140
			Monotone permutations	140
			Translation and complement permutations	141
			Permutation routing in a hypercube	141
		8.2.2	Improving the time complexity of the worst-case permutations in hyper-	149
		000	Sorting based permutation routing in hypercubic networks	1/12
		0.2.0 0.1	Off line normulation routing in Runos notworks	142
		0.2.4	Applications of the Paper off line routing algorithms	144
		0.2.0	Indirect butterflies	144
			Direct butterflies	144
			Simulations on humanoulos	144
			Simulations on hypercubes.	140
9	Con	nmunio	cation algorithms	147
	9.1	Taxon	omy of communication problems and models	147
			Basic collective communication operations (CCOs)	147
			Communication models and metrics	147
			An example of calculations of lower bounds for CCOs. \ldots \ldots	148
	9.2	One-to	-all broadcast (OAB)	149
		9.2.1	OAB in SF networks	149
			9.2.1.1 Lower and upper bounds	149
			Lower bounds.	149

۲

		Upper bounds in general all-output-port networks	149
		Upper bounds in general 1-port networks	149
		9.2.1.2 Optimal OAB in EREW PRAM, 1-port cliques, and hyper-	
		cubes: RD \ldots	150
		RD in hypercubes.	150
		9.2.1.3 Dimension-ordered trees in meshes	150
		All-output–port meshes.	150
		1-port meshes.	151
		9.2.1.4 Dimension ordered trees in tori	152
	9.2.2	OAB in WH networks	152
		9.2.2.1 Lower and upper bounds	152
		9.2.2.2 1-port hypercubes	152
		9.2.2.3 All-output-port hypercubes	152
		Double tree algorithm.	153
		Ho-Kao algorithm.	153
		9.2.2.4 1-port tori	154
		RD in 1-D tori.	154
		RD in 1-D meshes	155
		Dimension-ordered RD in higher-D meshes and tori.	155
		9.2.2.5 All-output-port tori	155
		An optimal OAB algorithm in 2-port WH 1-D tori	156
		Diagonal-based OAB algorithm (DIAGMESHOAB) in 4-port WH	
		2-D tori.	156
9.3	Multio	st	157
	9.3.1	ADOC-based MC algorithm in 1-port WH hypercubes	157
	9.3.2	1-port WH 2-D meshes	158
9.4	One-to	all scatter (OAS)	159
	9.4.1	Noncombining OAS	159
		9.4.1.1 Lower bounds	159
		9.4.1.2 1-port SF networks	160
		9.4.1.3 1-port WH networks	160
		9.4.1.4 All-port SF networks	160
		All-port meshes or tori.	160
		All-port hypercubes.	161
		9.4.1.5 All-port WH networks	161
	9.4.2	Combining OAS	161
		Lower bounds.	162
		SF 1-D meshes and tori.	162
		WH meshes and tori	162
		Hypercubes	163
9.5	All-to-	ll broadcast (AAB)	163
	9.5.1	SF combining AAB	163
		9.5.1.1 All-port full-duplex networks	163
		Lower and upper bounds	164
		9.5.1.2 All-port half-duplex networks	164

|

	Better SF combining AAB algorithms in bipartite networks 1°	64
	Better SF combining AAB algorithms in strongly orientable net-	
	works. \ldots \ldots \ldots \ldots \ldots \ldots	64
	9.5.1.3 1-port SF networks	66
	Lower and upper bounds	66
	1-D full-duplex SF meshes and tori	66
	Higher-D meshes or tori	.67
	${\rm Hypercubes.} \qquad 1$	168
	9.5.2 SF noncombining AAB in all-port full-duplex model 1	.68
	9.5.2.1 Lower bounds \ldots 1	168
	$9.5.2.2 M(z_1,z_2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	168
	9.5.2.3 Vertex-symmetric topologies $\dots \dots \dots$	169
	2-D and 3-D tori. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	169
	Edge-disjoint Hamiltonian cycles.	169
	Hypercubes	170
	9.5.3 WH combining AAB	171
9.6	All-to-all scatter (AAS)	171
	9.6.1 Lower bounds	172
	9.6.2 SF combining AAS	172
	9.6.2.1 Hypercubes	172
	9.6.2.2 1-port half-duplex 1-D torus	173
	9.6.2.3 2-port full-duplex 1-D torus	173
	9.6.2.4 1-port or 2-port higher-D meshes/tori	173
	9.6.3 WH combining AAS	174
	9.6.3.1 Hypercubes	174
	9.6.3.2 Meshes/tori	174
	The BINEXCHAAS algorithm.	174
	The QUADEXCHAAS algorithm.	175
	9.6.4 WH noncombining AAS	175
	9.6.4.1 Hypercubes	175
	9.6.4.2 2-D meshes/tori with XY routing	176
	,	
10 Para	allel algorithms for linear algebra	177
10.1	Basic definitions	177
10.2	Basic matrix mapping schemes	177
	10.2.1 Striped mapping	177
	10.2.2 Checkerboard mapping	178
10.3	Matrix transposition	178
	10.3.1 Striped mapped matrix	178
	10.3.2 Checkerboard mapped matrix	179
	10.3.2.1 SF 2-D mesh	179
	10.3.3 WH 2-D mesh	180
	10.3.4 Hypercube	180
10.4	Matrix-vector multiplication (MVM)	181
	10.4.1 Row-wise mapped matrix	181

۳

10.4.2	Column-	wise mapped matrix
10.4.3	Checkerb	oard mapped matrix
Matrix	-matrix n	nultiplication $C = AB$
10.5.1	A naive a	algorithm
10.5.2	A less na	ive algorithm
10.5.3	Cannon's	algorithm
10.5.4	Fox's alg	orithm Broadcast-Multiply-Roll (BMR)
Paralle	el algorith	ms for systems of linear equations
10.6.1	Triangula	ar matrices and back substitution
10.6.2	Tridiagor	al systems and even-odd reduction
10.6.3	Parallel o	lirect methods for solving dense SLE
	10.6.3.1	LU decomposition
	10.6.3.2	Optimal mapping for the parallel LU decomposition 189
	10.6.3.3	Implementation of the parallel LU decomposition 190
10.6.4	Iterative	methods for solving SLEs
	10.6.4.1	Parallel Jacobi method 191
	10.6.4.2	Parallel Gauss-Seidel method
	10.6.4.3	Partial differential equations and their discretizations 192
	Pa	arallel Jacobi algorithm
	Pa	arallel Gauss-Seidel algorithm
	Hi	ighly parallel Gauss-Seidel algorithm
	0	ther discretizations and their parallel solutions. \ldots \ldots 19
	10.4.2 10.4.3 Matrix 10.5.1 10.5.2 10.5.3 10.5.4 Paralle 10.6.1 10.6.2 10.6.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$