Contents

1 Performance and scalability of parallel algorithms 1
1.1 Asymptotics 1
1.2 Performance metrics of sequential algorithms 2
1.3 Performance metrics of parallel algorithms 3
1.3.1 Parallel time $T(n, p)$ and speedup $S(n, p)$ 3
1.3.2 Parallel cost $C(n, p)$, work $W(n, p)$, and efficiency $E(n, p)$ 5
1.3.3 An example: parallel binary reduction 6
1.3.4 Sources of inefficiency of parallel algorithms and ways to eliminate it 7
1.4 The scalability of parallel algorithms 7
1.4.1 Improving the cost and efficiency by reducing p 7
1.4.1.1 RowSimParAdD $=$ Row-wise simulation of PARADD 7
1.4.1.2 ColSimparAdd - Column-wise simulation of ParAdd 8
1.4.2 The scalability problem 9
1.4.3 Cost scalability and isoefficiency functions ψ_{1}, ψ_{2} 9
1.4.3.1 Time scalability 12
1.4.4 Amdahl's law 14
1.4.5 Gustafson's law 14
2 Parallel architectures and models 15
2.1 Taxonomies of parallel architectures 15
2.1.1 Instruction and data flow taxonomy 16
2.1.1.1 Single Instruction Multiple Data (SIMD) architecture model 16
2.1.1.2 Multiple Instruction Multiple Data (MIMD) architecture model 17
2.1.1.3 Comparison of SIMD and MIMD, SPMD style, and data par- allel languages 17
2.1.2 Mernory organization taxonomy 19
2.1.3 Interconnection network taxonomy 20
2.2 Parallel Random Access Machine model 22
2.2.1 PRAM submodels and the computational power 23
2.2.2 Optimal and fully parallel PRAM algorithms 24
2.2.3 Simulations of large PRAMs on small PRAMs of the same type 25
2.2.3.1 Coarse-grain (cost-preserving) simulation of PRAM algorithms on PRAMs with less processors 25
2.2.3.2 Fine-grain (work-preserving) simulation of PRAM algorithms on PRAMs with less processors and Brent's scheduling principle 25
2.2.3.3 Simulation of large-memory PRAM algorithms on small-memory PRAMs 26
2.2.4 Simulation of stronger PRAMs on weaker ones 26
2.3 Asynchronous PRAM 29
2.3.1 Implementation of barriers 30
2.3.2 Simulations of PRAM algorithms on APRAMs 30
2.3.3 Design of APRAM algorithms 32
3 Interconnection networks 34
3.1 Basic notions and terminology 34
Letters, alphabets, and strings. 34
Modulo arithmetics and logarithms. 34
Graphs and subgraphs 34
Node degree and regularity. 35
Isomorphism and automorphism. 35
Union and Cartesian product. 35
Vertex and edge symmetry. 36
Paths, distances, diameters, and connectivity. 37
Bipartite and Hamiltonian graphs. 38
Hierarchical recursivity and scalability of graph topologies. 38
Digraphs. 38
3.2 Requirements on INs for parallel computers 38
Small and fixed vertex degree. 38
Small diameter and small average distance. 38
Symmetry: 39
Hierarchical recursivity. 39
Efficient and incremental scalability. 39
High connectivity and fault tolerance and small fault diameter or fault average distance. 39
Bisection width: controversial. 39
Support for efficient routing and collective communication. 39
Embeddability of and into other topologies. 39
Hamiltonicity and 2-colorability. 40
3.3 Direct strictly orthogonal networks 40
3.3.1 Binary hypercube of dimension n, Q_{n} 40
Basic structural properties. 40
Routing and distances. 41
Hypercube-based multiprocessor machines. 41
3.3.2 n-dimensional mesh of dimension sizes $z_{1}, z_{2}, \ldots, z_{n}, M\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ 42
Basic structural properties. 42
Routing and distances. 43
Mesh-based multiprocessor machines 43
3.3.3 n-dimensional torus of dimension sizes $z_{1}, z_{2}, \ldots, z_{n}, K\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ 43
Basic structural properties. 43
Routing and distances 44
Torus-based multiprocessor machines. 44
3.3.4 Comparisons of hypercubes, meshes, and tori 44
3.4 Direct sparse hypercubic networks 45
3.4.1 Cube-connected cycles of dimension $n, C C C_{n}$ 45
Basic structural properties. 45
Routing and distances. 46
CCC-based multiprocessors. 46
3.4.2 Wrapped butterfly of dimension $n, w \mathcal{F} F_{n}$ 46
Basic structural properties. 46
Routing and distances. 47
3.4.3 Ordinary butterfly of dimension $n, o b F_{n}$ 47
Basic structural properties. 47
Routing and distances. 47
Butterfly-based multiprocessors. 47
3.5 Indirect (multistage) sparse hypercubic networks 48
3.5.1 Theory of generic binary unidirectional MINs 48
3.5.2 Basic properties of unidirectional binary delta MINs 49
Deterministic greedy routing in k-D delta binary MINs. 50
3.5.3 Rearrangeable unidirectional MINs 50
3.5.4 Bidirectional delta MINs 51
3.5.5 Comparison of direct hypercubic networks and indirect hypercubic MINs 52
4 Embeddings and simulations of INs 54
4.1 The embedding problem 54
4.1.1 Basic definitions for static embeddings 54
4.1.2 Some properties and lower bounds 56
4.2 Embeddings into the hypercube 57
4.2.1 Embeddings of paths and cycles 58
4.2.2 Static embeddings of trees 59
4.2.2.1 Complete binary trees 59
Straightforward embedding based on inorder labelling with dil $=1.5 .60$
Nearly optimal embedding of $C B T_{n}$ into Q_{n+1}. 61
4.2.2.2 Other trees 62
4.2.3 Dynamic randomized embeddings of trees 62
4.2.4 Binary n-level Divide\&Conquer (D\&C) computations on hypercubes 63
Optimal implementation of a pipelined D\&C computation on Q_{n}. 63
Optimal implementation of a one-wave D\&C computation on Q_{n}. 63
4.2.5 Embeddings of meshes and tori 64
4.2.6 Embeddings of hypercubic networks 65
4.3 Embeddings into meshes and tori 66
4.3.1 Embeddings of 1-D meshes/tori into high-D meshes/tori 66
4.3.2 Embeddings of hypercubes into meshes/tori 67
4.3.3 Embeddings of 2-D tori into 1-D tori 68
4.3.4 Embeddings of 2-D meshes into 2-D meshes 68
4.3.5 Binary n-level D\&C computations on 2-D meshes 70
An efficient implementation of a one-wave $D \& C$ computation on 2-D square meshes. 71
An implementation of the pipelined $\mathrm{D} \& \mathrm{C}$ computation on 2-D square meshes. 71
4.4 Embeddings of linear arrays/cycles into any network 72
4.5 Embeddings into hypercubic topologies 73
4.5.0.1 Normal hypercube algorithms 74
5 Routing algorithms and switching techniques 76
5.1 Architecture of the communication subsystem 76
5.1.1 Computing node and router 76
5.1.2 Units of communication 77
5.1.3 The design space of routing algorithms 77
5.1.3.1 Routing decisions: when and where made 78
5.1.3.2 Adaptiveness 78
5.1.3.3 Minimality 78
5.1.3.4 Progressiveness 78
5.1.4 Implementation of the routing algorithm 79
5.2 Performance metrics 79
5.3 Basic switching techniques 80
5.3.1 Circuit switching (CS) 80
Communication latency. 81
5.3.2 Store-and-forward (SF) switching 81
Communication latency. 81
5.3.3 Virtual cut-through (VCT) switching 81
Communication latency. 82
5.3.4 Wormhole (WH) switching 82
Communication latency 83
5.3.5 Simplified formulae for the communication latency 84
Distance sensitive switching 84
Distance insensitive switching. 84
5.4 Why is distance-insensitive switching important? 84
5.5 Deadlocks 84
5.5.1 How to solve the deadlock problem? 85
5.5.2 Channel dependence graph 85
5.5.3 Deadlock avoidance by routing restrictions 86
5.5.3.1 Dimension-ordered routing 86
5.5.3.2 $U p^{*} / D o w n^{*}$ routing algorithms in irregular networks 87
5.5.4 Deadlock avoidance based on virtual channels 88
5.5.4.1 Deadlock avoidance in tori 89
6 Prefix computations and Eulerian tour techniques 92
6.1 Parallel reduction algorithms 92
6.2 Parallel prefix sum (PPS) algorithms 93
6.2.1 PPS on EREW PRAMs 93
6.2.2 PPS on trees 94
Generic PPS on indirect trees 94
Generic PPS on direct trees. 94
PPS on an arbitrary topology 95
6.2.3 PPS on hypercubes 95
6.2.4 PPS on meshes 96
PPS on SF meshes 96
PPS on WH meshes. 96
6.3 Scalability of the PPS 96
6.4 Applications of the PPS 98
Packing problem. 98
RadixSort 98
Carry-look-ahead parallel binary adder. 98
Tridiagonal system of equations. 99
6.5 Segmented PPS (prefix sum) (SPPS) 100
6.5.1 EREW parallel QuickSort 101
6.6 Prefix computations on linked lists 102
6.6.1 List ranking and PPS on linked lists 102
6.6.2 The problem of scalability of pointer jumping 103
6.6.3 The idea of a scalable list ranking 104
6.7 Eulerian tour techniques (ETT) in trees 104
Eulerian graphs. 104
Adjacency list representation. 104
6.7.1 Parallel construction of Eulerian tours and paths in spanning trees 105
Eulerian tour construction and the labyrinth rule. 105
Transformation of an Eulerian tour into an Eulerian path. 106
Eulerian path ranking. 106
6.7.2 Solving graph problems using the ETT 106
6.7.2.1 Computing all parents in parallel 106
6.7.2.2 Computing all subtree sizes in parallel 107
6.7.2.3 Computing levels of all vertices in parallel 108
6.7.2.4 Preorder numbering 108
7 Parallel sorting algorithms 110
7.1 Introduction to comparison-based parallel sorting 110
7.2 Indirect sorting networks 110
7.3 Direct sorting networks 111
7.3.1 Scalability of sorting algorithms. 112
7.4 A naive EREW PRAM (N, p) sorting algorithm 113
7.5 Oblivious sorting and 0-1 sorting theorem 113
7.6 Sorting on mesh networks 115
7.6.1 Even-odd transposition sorting (parallel bubble-sort) on 1-D meshes 115
Scalability of EOTSORT on $M(p)$ 115
7.6.2 ShearSort on 2-D meshes 115
Scalability of ShearSort on $M(\sqrt{p}, \sqrt{p})$. 116
7.6.3 The lower bound on 2-D mesh snake-like sorting 117
7.6.4 Lexicographic sorting on 3-D mesh $M(n, n, n)$ 117
Scalability of the 3DSORT algorithm on $M(\sqrt[3]{p}, \sqrt[3]{p}, \sqrt[3]{p})$ 118
7.7 Sorting on hypercubic networks 119
7.7.1 EvenOddMergeSort (EOMS) 119
7.7.2 EvenEvenMergeSort (EEMS) 121
7.7.3 BitonicMergeSortr (BMS) 122
7.7.4 Implementation of MergeSort algorithms on hypercubic networks 124
7.7.4.1 Implementation of the EOMS algorithm on a butterfly network 124
7.7.4.2 Implementation of the EOMS algorithm on a hypercube 125
7.7.4.3 Implementation of the BMS algorithm on a butterfly and hy- percube 126
7.7.5 Implementation of the BMS algorithm on PRAMs and 2-D meshes 126
Scalability of the MESHBMS algorithm. 128
Complexity and scalability of the 3DSort algorithm revised. 128
8 Permutations in mesh-based and hypercubic networks 129
8.1 Permutation routing in meshes 129
8.1.1 Greedy permutation routing in 1-D SF meshes 129
8.1.2 Greedy permutation routing in SF 2-D meshes 130
8.1.3 Higher-dimensional meshes 131
8.1.4 Time-memory trade-off problem for permutation routing in meshes 132
8.1.5 Randomized permutation routing 132
8.1.6 Sorting-based permutation routing in meshes 133
8.1.7 Off-line permutation routing in meshes 134
8.2 Permutation routing in hypercubic MINs 136
8.2.1 Greedy permutation routing in butterflies 137
8.2.1.1 Permutations with the worst-case greedy routing 137
8.2.1.2 Time complexity of the worst-case greedy permutation routing 138
8.2.1. 3 Permutations with optimal greedy routing in butterflies 139
Packing, spreading, and monotone permutations. 139
Spreading permutations 140
Monotone permutations. 140
Translation and complement permutations. 141
Permutation routing in a hypercube. 141
8.2.2 Improving the time complexity of the worst-case permutations in hyper- cubic networks 142
8.2.3 Sorting-based permutation routing in hypercubic networks 142
8.2.4 Off-line permutation routing in Benes networks 142
8.2.5 Applications of the Benes off-line routing algorithms 144
Indirect butterflies. 144
Direct butterflies 144
Simulations on hypercubes. 146
9 Communication algorithms 147
9.1 Taxonomy of communication problems and models 147
Basic collective communication operations (CCOs) 147
Communication models and metrics. 147
An example of calculations of lower bounds for CCOs. 148
9.2 One-to-all broadcast (OAB) 149
9.2.1 OAB in SF networks 149
9.2.1.1 Lower and upper bounds 149
Lower bounds. 149
Upper bounds in general all-output-port networks. 149
Upper bounds in general 1-port networks. 149
9.2.1.2 Optimal OAB in EREW PRAM, 1-port cliques, and hyper- cubes: RD 150
RD in hypercubes. 150
9.2.1.3 Dimension-ordered trees in meshes 150
All-output-port meshes. 150
1-port meshes. 151
9.2.1.4 Dimension ordered trees in tori 152
9.2.2 OAB in WH networks 152
9.2.2.1 Lower and upper bounds 152
9.2.2.2 1-port hypercubes 152
9.2.2.3 All-output-port hypercubes 152
Double tree algorithm. 153
Ho-Kao algorithm. 153
9.2.2.4 1-port tori. 154
RD in 1-D tori. 154
RD in 1-D meshes 155
Dimension-ordered RD in higher-D meshes and tori. 155
9.2.2.5 All-output-port tori. 155
An optimal OAB algorithm in 2-port WH 1-D tori. 156
Diagonal-based OAB algorithm (DiagMeshOAB) in 4-port WH 2-D tori. 156
9.3 Multicast 157
9.3.1 ADOC-based MC algorithm in 1-port WH hypercubes 157
9.3.2 1-port WH 2-D meshes 158
9.4 One-to-all scatter (OAS) 159
9.4.1 Noncombining OAS 159
9.4.1.1 Lower bounds 159
9.4.1.2 1-port SF networks 160
9.4.1.3 1-port WH networks 160
9.4.1.4 All-port SF networks 160
All-port meshes or tori. 160
All-port hypercubes 161
9.4.1.5 All-port WH networks 161
9.4.2 Combining OAS 161
Lower bounds. 162
SF 1-D meshes and tori 162
WH meshes and tori. 162
Hypercubes 163
9.5 All-to-all broadcast (AAB) 163
9.5.1 SF combining AAB 163
9.5.1.1 All-port full-duplex networks 163
Lower and upper bounds. 164
9.5.1.2 All-port half-duplex networks 164
Better SF combining AAB algorithms in bipartite networks 164
Better SF combining AAB algorithms in strongly orientable net- works. 164
9.5.1.3 1-port SF networks 166
Lower and upper bounds. 166
1-D full-duplex SF meshes and tori. 166
Higher-D meshes or tori. 167
Hypercubes. 168
9.5.2 SF noncombining AAB in all-port full-duplex model 168
9.5.2.1 Lower bounds 168
9.5.2.2 $M\left(z_{1}, z_{2}\right)$ 168
9.5.2.3 Vertex-symmetric topologies 169
2-D and 3-D tori. 169
Edge-disjoint Hamiltonian cycles. 169
Hypercubes. 170
9.5.3 WH combining AAB 171
9.6 All-to-all scatter (AAS) 171
9.6.1 Lower bounds 172
9.6.2 SF combining AAS 172
9.6.2.1 Hypercubes 172
9.6.2.2 1-port half-duplex 1-D torus 173
9.6.2.3 2-port full-duplex 1-D torus 173
9.6.2.4 1-port or 2-port higher-D meshes/tori 173
9.6.3 WH combining AAS 174
9.6.3.1 Hypercubes 174
9.6.3.2 Meshes/tori 174
The BinExchAAS algorithm. 174
The QuadExchaAS algorithm. 175
9.6.4 WH noncombining AAS 175
9.6.4.1 Hypercubes 175
9.6.4.2 $2-\mathrm{D}$ meshes/tori with XY routing 176
10 Parallel algorithms for linear algebra 177
10.1 Basic definitions 177
10.2 Basic matrix mapping schemes 177
10.2.1 Striped mapping 177
10.2.2 Checkerboard mapping 178
10.3 Matrix transposition 178
10.3.1 Striped mapped matrix 178
10.3.2 Checkerboard mapped matrix 179
10.3.2.1 SF 2-D mesh 179
10.3.3 WH 2-D mesh 180
10.3.4 Hypercube 180
10.4 Matrix-vector multiplication (MVM) 181
10.4.1 Row-wise mapped matrix 181
10.4.2 Column-wise mapped matrix 181
10.4.3 Checkerboard mapped matrix 182
10.5 Matrix-matrix multiplication $\mathcal{C}=\mathcal{A B}$ 183
10.5.1 A naive algorithm 183
10.5.2 A less naive algorithm 183
10.5.3 Cannon's algorithm 184
10.5.4 Fox's algorithm Broadcast-Multiply-Roll (BMR) 185
10.6 Parallel algorithms for systems of linear equations 186
10.6.1 Triangular matrices and back substitution 186
10.6.2 Tridiagonal systems and even-odd reduction 187
10.6.3 Parallel direct methods for solving dense SLE 188
10.6.3.1 LU decomposition 189
10.6.3.2 Optimal mapping for the parallel LU decomposition. 189
10.6.3.3 Implementation of the parallel LU decomposition 190
10.6.4 Iterative methods for solving SLEs 190
10.6.4.1 Parallel Jacobi method 191
10.6.4.2 Parallel Gauss-Seidel method 192
10.6.4.3 Partial differential equations and their discretizations 192
Parallel Jacobi algorithm. 193
Parallel Gauss-Seidel algorithm. 193
Highly parallel Gauss-Seidel algorithm. 194
Other discretizations and their parallel solutions. 195

