The four-colour theorem is one of the famous problems of mathematics, that frustrated generations of mathematicians from its birth in 1852 to its solution (using substantial assistance from electronic computers) in 1976. The theorem asks whether four colours are sufficient to colour all conceivable maps, in such a way that countries with a common border are coloured with different colours.

The book discusses various attempts to solve this problem, and some of the mathematics which developed out of these attempts. Much of this mathematics has generated a life of its own, and forms a fascinating part of the subject now known as graph theory.

The book is designed to be self-contained, and develops all the graphtheoretical tools needed as it progresses. It includes all the elementary graph theory that should be included in an introduction to the subject, before concentrating on specific topics relevant to the four-colour problem.

Part I covers basic graph theory, Euler's polyhedral formula, and the first published false 'proof' of the four-colour theorem. Part II ranges widely through related topics, including map-colouring on surfaces with holes, the famous theorems of Kuratowski, Vizing, and Brooks, the conjectures of Hadwiger and Hajos, and much more besides. Part III returns to the four-colour theorem, and gives a detailed study of the methods which finally cracked the problem.

ALSO PUBLISHED BY OXFORD UNIVERSITY PRESS

Probability and Random Processes Third edition Geoffrey Grimmett and David Stirzaker

One Thousand Exercises in Probability Geoffrey Grimmett and David Stirzaker

Linear Algebra Richard Kay and Robert Wilson

A First Course in Coding Theory Raymond Hill

Codes and Cryptography Dominic Welsh

Introduction to Algebra Peter J. Cameron

Error-correcting Codes and Finite Fields Oliver Pretzel

www.oup.com

Contents

PART I GRAPHS, MAPS AND THE FOUR-COLOUR PROBLEM

1	Introduction	3
	 Preliminaries History of the four-colour problem 	
2	Basic graph theory2.1Some definitions2.2Maps2.3Duality2.4Euler circuits	6 6 11 12 15
3	Applications of Euler's formula3.1Euler's formula3.2Applications	19 19 23
4	 Kempe's approach 4.1 The first 'proof' of the four-colour theorem 4.2 The five-colour theorem 4.3 A reduction theorem 4.4 Vertex-colouring of graphs 4.5 A three-colour theorem 	31 31 33 35 37 38
	PART II RELATED TOPICS	
5	Other approaches to the four-colour problem5.1 Hamilton cycles5.2 Edge-colourings5.3 More on edge-colouring	43 43 48 51
6	Maps on surfaces with holes6.1Some topology6.2Map colouring on a torus6.3Generalizing to surfaces of higher genus6.4Non-orientable surfaces	58 58 61 64 68
7	Kuratowski's theorem	72
	7.1 Connectivity7.2 A minimal counterexample to Kuratowski's theorem	72 76

viii Contents

	7.3 The proof of Kuratowski's theorem	77
	7.4 An alternative approach	82
8	Colouring non-planar graphs 8.1 Brooks' theorem	88 88
	3.2 The chromatic number	91
	8.3 Hadwiger's conjecture	95
	3.4 The Hajós conjecture	97
	3.5 The chromatic polynomial	99
	PART III HOW TO PROVE THE FOUR-COLOUR THEOREM	
9	Overview	107
	0.1 Historical remarks	107
	9.2 Elementary reductions	108
	9.3 Strategy	109
	9.4 Later improvements	110
10	Reducibility	111
	10.1 The Birkhoff diamond	111
	10.2 Reducing small cycles	114
	10.3 Birkhoff's reduction theorem	116
	10.4 Larger configurations	119
	10.5 Using a computer to prove reducibility	121
11	Discharging	125
	11.1 Unavoidable sets	125
	11.2 Simple examples of discharging	128
	11.3 A more complicated discharging algorithm	130
	11.4 Conclusion	132
Bil	liography	136
Inc	(Mitter approaches to the four-colour problem	139