
The four-colour theorem  is one o f the fam ous p rob lem s o f m athem atics, 
tha t fru stra ted  generations o f m athem aticians from  its b irth  in 1852 to 
its solution (using substantial assistance from  electronic com puters) in 
1976. The theo rem  asks w hether four co lours a re  sufficient to co lour all 
conceivable m aps, in such  a way that countries w ith a com m on b o rd e r 
are  co loured  with different colours.

The book d iscusses various a ttem pts to solve this’-problem, and  som e 
o f the m athem atics w hich developed ou t o f these a ttem pts. M uch o f this 
m athem atics has generated  a life o f its own, and  fo rm s a fascinating 
p art o f the subject now  know n as g raph  theory.

The book is designed to be self-contained, and  develops all the  graph- 
theoretical tools needed as it progresses. It includes all the e lem entary  
g raph theory  that should  be included in an in troduction  to the subject, 
before concen trating  on specific topics relevant to the four-colour

Part I covers basic g raph  theory, Euler s polyhedral form ula, and  the 
first published false ‘p ro o f of the four-co lour theorem . Part II ranges 
widely th rough  related topics, including m ap-colouring  on surfaces with 
holes, the fam ous theo rem s o f Kuratowski, Vizing, and  Brooks, the 
conjectures o f H adwiger and  Hajos, and  m uch m ore  besides. Part HI 
re tu rn s  to the four-co lour theorem , and  gives a detailed study o f the 
m ethods w hich finally cracked the problem .
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