The four-colour theorem is one of the famous problems of mathematics,
that frustrated generations of mathematicians from its birth in 1852 to
its solution (using substantial assistance from electronic computers) in
1976. The theorem asks whether four colours are sufficient to colour all
conceivable maps, in such a way that countries with a common border
are coloured with different colours.

The book discusses various attempts to solve this~problem, and some

of the mathematics which developed out of these attempts. Much of this
mathematics has generated a life of its own, and forms a fascinating
part of the subject now known as graph theory.

The book is designed to be self-contained, and develops all the graph-
theoretical tools needed as it progresses. It includes all the elementary
graph theory that should be included in an introduction to the subject,
before concentrating on specific topics relevant to the four-colour
problem.

Part | covers basic graph theory, Euler s polyhedral formula, and the
first published false ‘proof of the four-colour theorem. Part Il ranges
widely through related topics, including map-colouring on surfaces with
holes, the famous theorems of Kuratowski, Vizing, and Brooks, the
conjectures of Hadwiger and Hajos, and much more besides. Part HI
returns to the four-colour theorem, and gives a detailed study of the
methods which finally cracked the problem.
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