t CONTENTS

MOS DEVICES AND CIRCUITS

INTEGRATED SYSTEM FABRICATION

1.1	The MOS transistor	1
1.2	The basic inverter	5
1.3	Inverter delay	10
1.4	Parasitic effects	11
1.5	Driving large capacitive loads	12
1.6	Space versus time	14
1.7	Basic NAND and NOR logic circuits	15
1.8	Super buffers	17
1.9	A closer look at the electrical parameters	18
1.10	Depletion mode pull-ups versus enhancement mode pull-ups	20
1.11	Delays in another form of logic circuitry	22
1.12	Pull-up/pull-down ratios for inverting logic coupled by pass	
	transistors	24
1.13	Transit times and clock periods	25
1.14	Properties of cross-coupled circuits	26
1.15	A fluid model for visualizing MOS transistor behavior	29
1.16	Effects of scaling down the dimensions of MOS circuits and systems	33

2

1

38

1

2	2.1 Patterning	39	
2	2.2 Scaling of patterning technology	42	
2	2.3 The silicon gate <i>n</i> -channel MOS process	42	
2	2.4 Yield statistics	45	
2	2.5 Scaling of the processing technology	46	
2	2.6 Design rules	47	
2	2.7 Electrical parameters	51	

2.8 Current lir	nitations in conductors	
2.9 A closer lo	ook at some details	
.10 Choice of	technology	

U)
	5
	.)

DATA AND CONTROL FLOW IN SYSTEMATIC STRUCTURES	60
3.1 Introduction	60
3.2 Notation	64
3.3 Two-phase clocks	65
3.4 The shift register	66
3.5 Relating different levels of abstraction	68
3.6 Implementing dynamic registers	70
3.7 Designing a subsystem	71
3.8 Register-to-register transfer	75
3.9 Combinational logic	76
3.10 The programmable logic array	79
3.11 Finite-state machines	82
3.12 Toward a structured design methodology	88

Ą

IMPLEMENTING INTEGRATED SYSTEM DESIGNS: FROM CIRCUIT TOPOLOGY TO PATTERNING GEOMETRY TO WAFER FABRICATION

4.1	Introduction
4.2	Patterning and fabrication
4.3	Hand layout and digitization using a symbolic layout language
4.4	An interactive layout system
4.5	The Caltech Intermediate Form for LSI layout description
4.6	The multiproject chip
4.7	Patterning and fabrication in the future

OVERVIEW OF AN LSI COMPUTER SYSTEM, AND THE		
DESIGN OF THE OM2 DATA PATH CHIP	145	
5.1 Introduction	145	
5.2 The OM project at Caltech	146	
5.3 System overview	147	
5.4 The overall structure of the data path	149	
5.5 The arithmetic logic unit	150	
5.6 ALU registers	155	
5.7 Buses	156	
5.8 Barrel shifter	157	
5.9 Register array	163	

.10	Communication with the outside world	16
.11	Encoding the control operation of the data path	16
.12	Functional specification of the OM2 data path chip	16
	Appendix	18

ARCHITECTURE AND DESIGN OF SYSTEM CONTROLLERS, AND THE DESIGN OF THE OM2 CONTROLLER CHIP	189
6.1 Introduction	189
6.2 Alternative control structures	190
6.3 The stored-program machine	192

6.4 Microprogrammed control	200
6.5 Design of the OM2 controller chip	203
6.6 Examples of controller operation	211
6.7 Some reflections on the classical stored-program machine	216

SYSTEM TIMING	218
7.1 The third dimension	218
7.2 Synchronous systems	221
7.3 Clock distribution	229
7.4 Clock generation	233
7.5 Synchronization failure	236
7.6 Self-timed systems	242
7.7 Self-timed signaling	252
7.8 Self-timed elements	254

HIGHLY CONCURRENT SYSTEMS	26
8.1 Introduction	26
8.2 Communication and concurrency in conventional computers	26
8.3 Algorithms for VLSI processor arrays	27
8.4 Hierarchically organized machines	29
8.5 Highly concurrent structures with global communication	31
8.6 Challenges for the future	33

9	PHYSICS OF COMPUTATIONAL SYSTEMS	333
	9.1 Digital systems	334
	9.2 Voltage limit	34
	9.3 Discreteness of charge	342
	9.4 Transitions in quantum mechanical systems	34

xvi Contents

9.5 Irreversibility		348
9.6 Memory 9.7 Thermal limit		351
9.8 Quantum limits		357 358
9.9 Two technologies—An example)	360
9.10 Complexity of computation	-';	365
9.11 Entropic view of computation		366
9.12 Conclusion		370
Further Suggested Reading		373
Approximate Values of Physical Constants		379
Index		381
Introduction	1.8 ,	
VAICE OF COMPUTATIONAL SYSTEMS TANGO ULA 9 C		
S. G. ALU REBRETS DEBITETS INFORMUTATO STORES		