

contents

<i>foreword</i>	xv
<i>preface</i>	xvii
<i>acknowledgments</i>	xviii
<i>about this book</i>	xix
<i>about the cover illustration</i>	xxv

PART 1 INTRODUCTION TO DATA SCIENCE.....1

1	<i>The data science process</i>	3
1.1	The roles in a data science project	3
	<i>Project roles</i>	4
1.2	Stages of a data science project	6
	<i>Defining the goal</i>	7
	<i>■ Data collection and management</i>	8
	<i>Modeling</i>	10
	<i>■ Model evaluation and critique</i>	11
	<i>Presentation and documentation</i>	13
	<i>■ Model deployment and maintenance</i>	14
1.3	Setting expectations	14
	<i>Determining lower and upper bounds on model performance</i>	15
1.4	Summary	17

2 Loading data into R 18

- 2.1 Working with data from files 19
 - Working with well-structured data from files or URLs* 19
 - Using R on less-structured data* 22
- 2.2 Working with relational databases 24
 - A production-size example* 25 • *Loading data from a database into R* 30 • *Working with the PUMS data* 31
- 2.3 Summary 34

3 Exploring data 35

- 3.1 Using summary statistics to spot problems 36
 - Typical problems revealed by data summaries* 38
- 3.2 Spotting problems using graphics and visualization 41
 - Visually checking distributions for a single variable* 43
 - Visually checking relationships between two variables* 51
- 3.3 Summary 62

4 Managing data 64

- 4.1 Cleaning data 64
 - Treating missing values (NAs)* 65 • *Data transformations* 69
- 4.2 Sampling for modeling and validation 76
 - Test and training splits* 76 • *Creating a sample group column* 77 • *Record grouping* 78 • *Data provenance* 78
- 4.3 Summary 79

PART 2 MODELING METHODS 81

5 Choosing and evaluating models 83

- 5.1 Mapping problems to machine learning tasks 84
 - Solving classification problems* 85 • *Solving scoring problems* 87 • *Working without known targets* 88
 - Problem-to-method mapping* 90
- 5.2 Evaluating models 92
 - Evaluating classification models* 93 • *Evaluating scoring models* 98 • *Evaluating probability models* 101 • *Evaluating ranking models* 105 • *Evaluating clustering models* 105

5.3 Validating models 108

Identifying common model problems 108 • Quantifying model soundness 110 • Ensuring model quality 111

5.4 Summary 113

6 Memorization methods 115

6.1 KDD and KDD Cup 2009 116

Getting started with KDD Cup 2009 data 117

6.2 Building single-variable models 118

*Using categorical features 119 • Using numeric features 121
Using cross-validation to estimate effects of overfitting 123*

6.3 Building models using many variables 125

Variable selection 125 • Using decision trees 127 • Using nearest neighbor methods 130 • Using Naive Bayes 134

6.4 Summary 138

7 Linear and logistic regression 140

7.1 Using linear regression 141

Understanding linear regression 141 • Building a linear regression model 144 • Making predictions 145 • Finding relations and extracting advice 149 • Reading the model summary and characterizing coefficient quality 151 • Linear regression takeaways 156

7.2 Using logistic regression 157

*Understanding logistic regression 157 • Building a logistic regression model 159 • Making predictions 160 • Finding relations and extracting advice from logistic models 164
Reading the model summary and characterizing coefficients 166
Logistic regression takeaways 173*

7.3 Summary 174

8 Unsupervised methods 175

8.1 Cluster analysis 176

*Distances 176 • Preparing the data 178 • Hierarchical clustering with `hclust()` 180 • The k-means algorithm 190
Assigning new points to clusters 195 • Clustering takeaways 198*

8.2 Association rules 198

Overview of association rules 199 • *The example problem* 200
Mining association rules with the arules package 201
Association rule takeaways 209

8.3 Summary 209

9

Exploring advanced methods 2119.1 Using bagging and random forests
to reduce training variance 212

Using bagging to improve prediction 213 • *Using random forests to further improve prediction* 216 • *Bagging and random forest takeaways* 220

9.2 Using generalized additive models (GAMs) to learn non-monotone relationships 221

Understanding GAMs 221 • *A one-dimensional regression example* 222 • *Extracting the nonlinear relationships* 226
Using GAM on actual data 228 • *Using GAM for logistic regression* 231 • *GAM takeaways* 233

9.3 Using kernel methods to increase data separation 233

Understanding kernel functions 234 • *Using an explicit kernel on a problem* 238 • *Kernel takeaways* 241

9.4 Using SVMs to model complicated decision boundaries 242

Understanding support vector machines 242 • *Trying an SVM on artificial example data* 245 • *Using SVMs on real data* 248
Support vector machine takeaways 251

9.5 Summary 251

PART 3 DELIVERING RESULTS 253

10

Documentation and deployment 255

10.1 The buzz dataset 256

10.2 Using knitr to produce milestone documentation 258

What is knitr? 258 • *knitr technical details* 261 • *Using knitr to document the buzz data* 262

10.3	Using comments and version control for running documentation	266
	<i>Writing effective comments</i>	266
	<i>Using version control to record history</i>	267
	<i>Using version control to explore your project</i>	272
	<i>Using version control to share work</i>	276
10.4	Deploying models	280
	<i>Deploying models as R HTTP services</i>	280
	<i>Deploying models by export</i>	283
	<i>What to take away</i>	284
10.5	Summary	286

11 *Producing effective presentations* 287

11.1	Presenting your results to the project sponsor	288
	<i>Summarizing the project's goals</i>	289
	<i>Stating the project's results</i>	290
	<i>Filling in the details</i>	292
	<i>Making recommendations and discussing future work</i>	294
	<i>Project sponsor presentation takeaways</i>	295
11.2	Presenting your model to end users	295
	<i>Summarizing the project's goals</i>	296
	<i>Showing how the model fits the users' workflow</i>	296
	<i>Showing how to use the model</i>	299
	<i>End user presentation takeaways</i>	300
11.3	Presenting your work to other data scientists	301
	<i>Introducing the problem</i>	301
	<i>Discussing related work</i>	302
	<i>Discussing your approach</i>	302
	<i>Discussing results and future work</i>	303
	<i>Peer presentation takeaways</i>	304
11.4	Summary	304
appendix A	<i>Working with R and other tools</i>	307
appendix B	<i>Important statistical concepts</i>	333
appendix C	<i>More tools and ideas worth exploring</i>	369
	<i>bibliography</i>	375
	<i>index</i>	377