

Written by a distinguished plasma scientist and experienced author, this up-to-date work comprehensively covers current methods and new developments and techniques, including non-equilibrium atomic and molecular plasma states, as well as such new applications as gas lasers. It contains numerous appendices with reference data indispensable for plasma spectroscopy, such as statistical weights and partition sums and diatomic molecules. This book will be a valuable source of information for plasmaphysicists, spectroscopists, materials scientists and physical chemists.

From the Contents:

- Plasma as an Object of Spectroscopy
- Basic Concepts and Parameters Associated with the Emission, Absorption and Scattering of Light by Plasma
- Emission, Absorption and Scattering Techniques for Determining the Densities of Particles in Discrete Energy States
- Intensities in Spectra and Plasma Energy Distribution in the Internal and Translational Degrees of Freedom of Atoms and Molecules
- Measuring Concentrations of Atoms and Molecules
- Spectral Methods of Determining Electronic and Magnetic Fields in Plasma
- Determination of the Parameters of the Electronic Component of Plasma
- Some Information on Spectroscopy Techniques

Please find a further chapter 'Optical Constants of Materials' on
www.wiley-vch.de/publish/en

Vladimir N. Ochkin, after receiving his PhD degree from the P. N. Lebedev Physical Institute, Moscow, now serves as deputy director of this Institute and of the Russian Academy of Engineering Sciences. The main fields of his scientific interests are physical and chemical kinetics of gas discharge active medias, frequency tunable gas lasers, dispersive resonators and waveguide lasers as well as various kinds of plasma. Professor Ochkin was awarded the President of Russia Prize in 2004. He has authored more than 300 publications and several books.

ISBN 978-3-527-40778-1

www.wiley-vch.de

9 783527 407781

Contents

Preface XIII

References XVI

1	Plasma as an Object of Spectroscopy	1
	General Notions	1
1.1	The Concept of Low-Temperature Plasma. Diagnostics Problems	1
1.2	Equilibrium Plasma	6
1.2.1	Energy Distribution of Particles	6
1.2.2	Law of Mass Action. Neutral and Charged Particle Densities	7
1.2.3	Heat Emission. Kirchhoff's Law	11
1.3	Models of Equilibrium and the Associated Parameters	14
1.3.1	Local Thermal Equilibrium (LTE) Model	14
1.3.2	Partial Local Thermal Equilibrium (PLTE) Model	16
1.3.3	Model of Coronal Equilibrium (MCE)	20
1.3.4	Collisional-Radiative Model (CRM)	21
1.4	Optical Spectrum and Plasma Parameters	22
	References	25
2	Basic Concepts and Parameters Associated with the Emission, Absorption and Scattering of Light by Plasma	27
2.1	Photometric Quantities. Remarks on Terminology	27
2.2	Spectral Line Profile	31
2.2.1	Lorentz Broadening	32
2.2.2	Doppler Broadening	38
2.2.3	Joint Action of Natural, Doppler and Collision Broadening	41
2.3	Absorption in Lines	44
2.4	Emission in Lines. Optical Density Manifestations	46
2.5	Emission and Absorption in Continuous Spectrum	50
2.5.1	ff Bremsstrahlung Emission	52

2.5.2	<i>ff</i> Bremsstrahlung Absorption	54
2.5.3	<i>fb</i> Recombination Emission	55
2.5.4	Absorption Cross Section in <i>bf</i> Photoionization	57
2.5.5	Emission and Absorption of Radiation in the Case of Joint Action of the <i>ff</i> Bremsstrahlung and <i>fb</i> Recombination Mechanisms	58
2.6	Scattering of Light	60
2.6.1	Thomson Scattering on a Free Electron	60
2.6.2	Scattering on a Bound Electron	63
	References	63

3 Emission, Absorption and Scattering Techniques for Determining the Densities of Particles in Discrete Energy States 67

3.1	Emission Techniques	67
3.1.1	Identification of Spectra	67
3.1.2	Absolute Measurements	68
3.1.3	Emission of Extended Inhomogeneous Sources	71
3.2	Absorption Techniques Using Classical Emitters	75
3.2.1	Absorption Against the Background of Continuous Spectrum	75
3.2.2	Line Absorption	78
3.2.3	Self-Absorption of Multiplet Lines	83
3.3	Absorption Spectroscopy Using Tunable and Broadband Lasers	84
3.3.1	On the Advantages of Laser Sources Over Their Classical Counterparts in Direct Absorption Measurements	84
3.3.2	On the Noise Limitation of Sensitivity	86
3.3.3	Diode Laser Spectroscopy in the IR Region	88
3.3.4	Nonstationary Coherent Effects in Absorption Measurements	92
3.3.5	Use of the Classical Multipass Absorption Cells	95
3.3.6	Intracavity Absorption	95
3.3.7	Measuring Absorption from the Attenuation of Light with Time	99
3.4	Indirect Methods for Measuring Absorption of Laser Light	103
3.4.1	Induced Fluorescence	104
3.4.1.1	General Characteristic	104
3.4.1.2	Fluorescence Excitation by Continuous-Wave and Pulsed Laser Light	107
3.4.1.3	Induced Fluorescence Saturation and Decay	109
3.4.1.4	Induced Fluorescence Quenching and Taking Account of this Process	112
3.4.1.5	Restrictions Imposed by the Plasma's Own Glow	118
3.4.2	Optogalvanic Spectroscopy	121

3.4.2.1	The Use of the Optogalvanic Effect to Measure Light Absorption in Plasma	121
3.4.2.2	High-Resolution Optogalvanic Spectroscopy	124
3.5	Multiphoton Processes. Raman Scattering	129
3.5.1	Two-Photon Absorption	130
3.5.2	Spontaneous Raman Scattering	133
3.5.3	Stimulated Raman Scattering	135
3.5.4	Coherent Anti-Stokes Scattering	137
	References	143
4	Intensities in Spectra and Plasma Energy Distribution in the Internal and Translational Degrees of Freedom of Atoms and Molecules	147
4.1	Doppler Broadening, Velocity Distribution of Particles, Neutral Gas Temperature	147
4.1.1	Remarks on the Processing of Line Profiles	148
4.1.1.1	Registered and True Profiles	148
4.1.1.2	Predominantly Doppler Broadening Regions	149
4.1.1.3	Recovery of the Form of the Velocity Distribution of Particles	150
4.1.2	Examples of Abnormal Doppler Broadening and Nonequilibrium Velocity Distributions of Neutral Particles in Plasma	151
4.1.3	Excitation and Relaxation of Atoms and Molecules with Nonequilibrium Velocity in Interactions with Heavy Particles	154
4.1.3.1	Source Function	154
4.1.3.2	Relaxation of the Average Kinetic Energy of Particles with a Finite Lifetime	155
4.1.3.3	Relaxation of the Form of the Velocity Distributions of Particles in the Case of Large Deviations from Equilibrium and Finite Lifetime	159
4.1.4	On the Determination of the Gas Temperature from the Doppler Broadening of the Lines Emitted by Atoms and Molecules Excited by Electrons	161
4.1.5	Spectroscopic Manifestations of the Motion of Ions in Plasma	164
4.2	Distribution of Molecules Among Rotational Levels	167
4.2.1	On the Isolation of the Boltzmann Ensembles in the Bound State System of Particles	167
4.2.2	Distributions of Molecules Among Rotational Levels in an Electronic State with a Long Lifetime	170
4.2.3	Electron Impact Excitation of the Electronic–Vibrational–Rotational (EVR) Levels of Molecules	174
4.2.3.1	Observations and General Considerations	174

4.2.3.2	Experimental Determination of the Electron-Impact-Induced Changes in the Rotational States of Molecules in Plasma	177
4.2.4	Excitation of EVR Levels by Heavy Particles	181
4.2.4.1	OH Radical. Violet Bands	181
4.2.4.2	N ₂ Molecules. Second Positive System	183
4.2.5	On Gas Temperature Measurements in the Presence of Parallel Molecular Rotation Excitation Channels	184
4.2.5.1	Extension of the Form of Distribution of the Hot Molecules to the Region of Low Rotational Levels	185
4.2.5.2	Spectral Resolution	185
4.2.5.3	Effect of the Conditions Occuring in Plasma on the Rotational Temperature of the Hot Group	188
4.3	Line Intensities in the Vibrational Structure of Spectra and Distributions of Molecules Among Vibrational Levels	191
4.3.1	Elements of Vibrational Kinetics. Vibrational Energy and Temperature	191
4.3.1.1	Harmonic Oscillator Approximation	192
4.3.1.2	Effect of Anharmonicity	194
4.3.1.3	Diatom Molecular Mixture and Polyatomic Molecules	197
4.3.2	Vibrational Temperature and Distribution Measurements by Absorption	
	Spectroscopy Techniques	199
4.3.3	Emission Methods in the IR Region of the Spectrum	206
4.3.4	Combinations of Emission and Absorption Techniques.	
	Spectrum Inversion	211
4.3.5	Raman Scattering	216
4.3.6	Determination of the Vibrational Temperatures of Molecules in the Electronic Ground States from Electronic Transition Spectra	220
4.4	Distribution of Particles Among Electronic Levels	224
	References	227
5	Measuring Concentrations of Atoms and Molecules	235
5.1	General	235
5.2	Determining Atomic Concentrations by Absorption Techniques	237
5.2.1	Neutral Unexcited Atoms	237
5.2.2	Metastable Atoms	249
5.2.3	Low-Multiplicity Positive Ions	266
5.3	Determination of Molecular Concentration by the Absorption Method	268
5.3.1	Probabilities of Optical Transitions in Diatomic Molecules	269

5.3.2	Determination of Diatomic Molecular Concentrations from Absorption on Electronic Spectrum Lines	272
5.3.3	Determination of Molecular Concentration from Absorption in Vibrational–Rotational Spectra	278
5.3.4	Absorption of Radiation by Diatomic Molecules in Metastable Electronic States	281
5.3.5	Absorption of IR Radiation by Polyatomic Molecules	281
5.3.6	Absorption of Radiation by Molecular Ions	284
5.4	Actinometric Methods	288
5.5	Negative Ions	297
5.5.1	Concentration Measurements	298
5.5.2	Absorption of Light by the H^- Ions in Hydrogen LTE Plasma	301
	References	303
6	Spectral Methods of Determining Electronic and Magnetic Fields in Plasma	307
6.1	Determination of Electric Fields from the Spontaneous Emission of Radiation by Atoms in Plasma	312
6.1.1	Hydrogen-Like Atoms	312
6.1.2	Non-Hydrogen-Like Atoms	318
6.2	Laser Stark Spectroscopy	322
6.2.1	Stark Spectroscopy of Atoms	323
6.2.2	Laser-Induced Fluorescence of Polar Molecules in Electric Field	329
6.2.3	Multiphoton Excitation of Atoms	334
6.2.4	Coherent Four-Wave Stark Scattering Spectroscopy	337
6.3	Magnetic Field Investigations	342
6.3.1	Measurements Based on the Faraday Effect	342
6.3.2	Spectral Methods	343
	References	346
7	Determination of the Parameters of the Electronic Component of Plasma	351
7.1	Interferometry	351
7.2	Stark Broadening of Spectral Lines	356
7.2.1	General	356
7.2.2	Plasma Microfields	357
7.2.3	Linear Stark Effect	358
7.2.4	Quadratic Stark Effect	364
7.3	Truncation of Spectral Series of Hydrogen-Like Atoms	367
7.4	Intensities in Continuous Spectrum	371
7.5	Scattering of Light on Electrons	374

7.5.1	Scattering of Light by Randomly Moving Electrons (Thomson Scattering)	375
7.5.2	Manifestation Regions of the Thomson and Collective Scattering Mechanisms	377
7.5.3	Scattered Spectrum and Plasma Parameters (Direct Problem)	379
7.5.4	Determination of Plasma Parameters from Scattered Spectra (Inverse Problem)	381
7.5.5	Limitations of the Method, Sensitivity and Examples	385
7.6	Some Remarks on Measurements from Intensities in Line and Band Spectra	391
	References	393
8	Some Information on Spectroscopy Techniques	397
8.1	Characteristics of Optical Materials. Main Relations	398
8.1.1	Reflection at an Interface	398
8.1.2	Dispersion of the Optical Properties of Materials	399
8.1.3	Transmission and Reflection of Thin Films	400
8.1.3.1	Metal Films	400
8.1.3.2	Dielectric Films	402
8.2	Spectral Instruments	406
8.2.1	Slit Instruments	409
8.2.2	Interferometers	414
8.2.3	Spectral Instruments with Interference Modulation	425
8.2.3.1	Fourier(-Transform) Spectrometers	425
8.2.3.2	Interference Spectrometers with Selective Amplitude Modulation (ISSAM)	430
8.2.4	Raster Spectrometers	431
8.2.5	Acousto-optic Spectrometers	433
8.3	Gas-Discharge Light Sources	439
8.3.1	Illumination Engineering Quantities	439
8.3.2	Gas Discharges in an Envelope (Lamps)	441
8.3.2.1	Continuous-Discharge Lamps	441
8.3.2.2	Pulsed-Discharge Lamps	448
8.3.3	Open Light Sources	456
8.3.3.1	Continuous-Discharge Sources	456
8.3.3.2	Pulsed-Discharge Sources	456
8.4	Photodetectors	460
8.4.1	Parameters	461
8.4.1.1	Sensitivity	461
8.4.1.2	Noise	462
8.4.1.3	Effective and Ultimate Sensitivity	463
8.4.1.4	Inertia	464

8.4.2	Main Types of Single-Element Detectors	464
8.4.2.1	Thermal Detectors	464
8.4.2.2	Photoelectric (Quantum, Photonic) Detectors with Extrinsic Photoeffect	466
8.4.2.3	Photoelectric Detectors with Intrinsic Photoeffect	470
8.4.2.4	Photoemulsion	471
8.4.2.5	Comparative Characteristics of Single-Element Detectors	473
8.4.3	Multielement and Distributed Photodetectors	477
8.4.3.1	Spatial Resolution	477
8.4.3.2	Photographic Detectors	478
8.4.3.3	Image Converter and Intensifier Tubes	479
8.4.3.4	Charge-Coupled Detectors	480
	References	484

Appendix A

	Statistical Weights and Statistical Sums	487
A.1	Statistical Weight of Energy Levels in Atoms and Ions	487
A.2	Statistical Weight of Electronic States in Molecules	488
A.3	Statistical Weight of Vibrational Levels of Molecules	488
A.4	Statistical Weight of Rotational Levels of Molecules	489
A.4.1	Statistical Sum of Atoms and Ions	492
A.4.2	Statistical Sum of Molecules	492
	References	495

Appendix B

	Conversion of Quantities Used to Describe Optical Transition Probabilities in Line Spectra	497
	References	497

Appendix C

	Two-Photon Absorption Cross Sections for Some Atoms and Molecules in the Ground State	499
	References	503

Appendix D

	Information on Some Diatomic Molecules for the Identification and Processing of Low-Temperature Plasma Spectra	505
D.1	Brief Information from Molecular Spectroscopy – Designations of States and Transitions, Coupling Types, Selection Rules, General Spectrum Structure	505
D.1.1	General Rules	508
D.1.2	More Particular Rules	509
D.2	Nitrogen N ₂ , N ₂ ⁺	513

D.2.1	Electronic States, Electronic Transition Systems (Bands)	513
D.2.2	Molecular Constants of the Ground and Combining States	513
D.2.3	Second Positive (2^+) System	513
D.2.3.1	Vibrational Structure of the $C^3\Pi(v')-B^3\Pi(v'')$ Transition	517
D.2.3.2	Rotational Structure	517
D.2.4	First Positive (1^+) System	519
D.2.4.1	Vibrational Structure of the $B^3\Pi_g(v')-A^3\Sigma_u^+(v'')$ Transition	519
D.2.4.2	Rotational Structure	519
D.2.5	First Negative (1^-) System	522
D.2.6	Vibrational Structure of the $B^2\Sigma_u^+(v')-X^2\Sigma_g^+(v'')$ Transition	522
D.2.6.1	Rotational Structure	522
D.3	Carbon Oxide CO	526
D.3.1	Electronic States, Electronic Transitions	526
D.3.2	Molecular Constants of the Ground and Combining States	526
D.3.3	Ångström Bands System $B^1\Sigma^+-A^1\Pi$	526
D.3.3.1	Vibrational Structure	526
D.3.3.2	Rotational Structure of the $B^1\Sigma^+-A^1\Pi$ Bands	526
D.4	Hydrogen H ₂ and Deuterium D ₂	528
D.4.1	Electronic States, Electronic Transitions	528
D.4.2	Molecular Constants of the Ground and Combining States	528
D.4.3	Ortho- and Para-Modifications	529
D.4.4	Fulcher- α Bands System $d^3\Pi_u-a^3\Sigma_g^+$	530
D.4.4.1	Vibrational Structure	531
D.4.4.2	Rotational Structure	531
D.4.5	$I^1\Pi_g-B^1\Sigma_u^+$ Transition	533
D.4.5.1	Vibrational Structure	533
D.4.5.2	Rotational Structure	535
D.4.6	$G^1\Sigma_g^+-B^1\Sigma_u^+$ Transition	537
D.4.6.1	Vibrational Structure	537
D.4.6.2	Rotational Structure	537
D.5	Nitrogen Oxide NO	541
D.5.1	Electronic States, Electronic Transitions	541
D.5.2	Molecular Constants of the Ground and Combining States	541
D.5.3	γ System (195–340 nm)	541
D.5.3.1	Vibrational Structure	541
D.5.3.2	Rotational Structure	542
D.6	Cyanogen CN	543
D.6.1	Electronic States, Electronic Transitions	543
D.6.2	Molecular Constants of the Ground and Combining States	545
D.6.3	Violet System	546
D.6.3.1	Vibrational Structure	546

D.6.3.2	Rotational Structure	546
D.7	Carbon Radical C_2	548
D.7.1	Electronic States, Electronic Transitions	548
D.7.2	Molecular Constants of States	548
D.7.3	Swan Bands System	548
D.7.3.1	Vibrational Structure	548
D.7.3.2	Rotational Structure	550
D.8	CH Radical	551
D.8.1	Electronic States, Electronic Transitions	551
D.8.2	Molecular Constants of the Ground and Combining States	553
D.8.3	$B^2\Sigma^- - X^2\Pi$ Transition	555
D.8.3.1	Rotational Structure	556
D.8.4	$C^2\Sigma^+ - X^2\Pi$ Transition	556
D.9	Hydroxyl Radical OH	558
D.9.1	Electronic States, Electronic Transitions	558
D.9.2	Molecular Constants of the Ground and Combining States	560
D.9.2.1	Rotational Structure	560
	References	566

Appendix E

Rotational Line Intensity Factors in the Electronic–Vibrational Transition Spectra of Diatomic Molecules 569

E.1	Singlet Transitions	570
E.1.1	$^1X - ^1X, \Delta\Lambda = 0$ Transitions	570
E.1.2	$^1X - ^1Y, \Delta\Lambda = \pm 1$ Transitions	570
E.2	Doublet Transitions	570
E.2.1	$^2X - ^2X, \Delta\Lambda = 0$ Transitions	571
E.2.2	$^2X - ^2Y, \Delta\Lambda = \pm 1$ Transitions	572
E.3	Triplet Transitions	573
E.3.1	$^3X - ^3X, \Delta\Lambda = 0$ Transitions	574
E.3.1.1	Dipole-Forbidden Branches	576
E.3.2	$^3X - ^3Y, \Delta\Lambda = \pm 1$ Transitions	577
E.3.3	$^3\Sigma - ^3\Delta, \Delta\Lambda = \pm 2$ Transitions	579
E.4	Remarks on the Normalization of Rotational Line Intensity Factors	580
E.5	On Symbolic Notation	581
	References	582

Appendix F

Measurement of the Absolute Populations of Excited Atoms by Classical Spectroscopy Techniques 583
Yu. B. Golubovskii
References 595

Appendix G

General Information for Plasma Spectroscopy Problems 597

G.1 Physical Constants 597
G.2 Atomic Values 598
G.3 Correspondence between Spectral and Traditional Energy Measurement Units 598
G.4 Electrical Units 599
G.5 Units from Molecular Kinetics 599
G.6 Quantities from Gas-Discharge Physics 600
References 600

Index 603

Appendix H

Optical Constants of Materials* 611

H.1 Transmission 611
H.2 Refractive Indices 635
H.3 Reflection 638
References 651