Solving homework problems is the single most effective way for students to familiarize themselves with the language and details of solid state physics. Testing problem-solving ability is the best means at the professor's disposal for measuring student progress at critical points in the learning process. This book enables any instructor to supplement end-of-chapter textbook assignments with a large number of challenging and engaging practice problems and discover a host of new ideas for creating exam questions. In addition to numerous updates, this revised edition includes a fortified optics chapter and an entirely new chapter on mesoscopic and nanoscale physics.

Solid State Physics: Problems and Solutions is designed to be used in tandem with any of the excellent textbooks on this subject. Each problem has been chosen for its ability to illustrate key concepts, properties, and systems, knowledge of which is crucial in developing a complete understanding of the subject, including:

- Crystal Structures
- Interatomic Forces and Lattice Vibrations
- Electronic Band Structure
- Density of States
- Elementary Excitations
- Thermodynamics of Noninteracting Quasiparticles
- Optical Properties
- Interactions and Phase Transitions
- Mesoscopic and Nanoscale Systems

László Mihály received his Ph.D. from Eötvös University, Hungary, in 1972, after which he joined the Central Research Institute for Physics in Budapest. He has performed research at the Institute Laue-Langevine in Grenoble, the Université Paris-Sud in Orsay, and the University of California in Los Angeles. He has been Professor of Physics at Stony Brook University since 1989. Professor Mihály is a Fellow of the American Physical Society.

Michael C. Martin received his Ph.D. degree in physics from Stony Brook University in 1995. He then worked at Brookhaven National Laboratory and at the University of California, Berkeley. Dr. Martin joined the scientific staff at the Advanced Light Source, Lawrence Berkeley National Laboratory, in 1997 and continues his research activities there, currently as Scientific Support Group Deputy Leader and Staff Scientist leading the synchrotron infrared programs.

Contents

Preface to the Second Edition XVPreface to the First Edition XVII

Part I	Problems 1
1	Crystal Structures 3
1.1	Problem: Symmetries 8
1.2	Problem: Rotations 8
1.3	Problem: Copper Oxide Layers 9
1.4	Problem: Graphite 10
1.5	Problem: Structure of A_xC_{60} 10
1.6	Problem: hcp and fcc Structures 10
1.7	Problem: <i>hcp</i> and <i>bcc</i> Structures 11
1.8	Problem: Structure Factor of A_xC_{60} 11
1.9	Problem: Neutron Diffraction Device 11
1.10	Problem: Linear Array of Emitters: Finite Size Effects 11
1.11	Problem: Linear Array of Emitters: Superlattice 12
1.12	Problem: Powder Diffraction of hcp and fcc Crystals 12
1.13	Problem: Momentum Resolution 12
1.14	Problem: Finite Size Effects 12
1.15	Problem: Random Displacement 13
1.16	Problem: Vacancies 13
1.17	Problem: Integrated Scattering Intensity 13
2	Interatomic Forces and Lattice Vibrations 15
2.1	Problem: Madelung Constant 19
2.2	Problem: NaCl Bulk Modulus 19
2.3	Problem: Madelung with Screened Potential 19
2.4	Problem: Triple-axis Spectrometer 19
2.5	Problem: Phonons in Silicon 20
2.6	Problem: Linear Array of Emitters: Phonons 20

/	Contents	
	2.7	Problem: Long-range Interaction 21
	2.8	Problem: Mass Defect 21
	2.9	Problem: Debye Frequency 21
	2.10	Problem: Vibrations of a Square Lattice 21
	2.11	Problem: Grüneisen Parameter 22
	2.12	Problem: Diatomic Chain 22
	2.13	Problem: Damped Oscillation 23
	2.14	Problem: Two-dimensional Debye 23
	2.15	Problem: Soft Optical Phonons 23
	2.16	Problem: Soft Phonons Again 23
	2.17	Problem: Nanowire Phonons 24
	3	Electronic Band Structure 25
	3.1	Problem: Nearly Free Electrons in One Dimension 30
	3.2	Problem: Eigenfunctions of Nearly Free Electrons in One
		Dimension 30
	3.3	Problem: Tight-binding Hamiltonian 31
	3.4	Problem: Nearly Free Electrons in Dirac-delta Potentials 31
	3.5	Problem: Tight-binding in Dirac-delta Potentials 31
	3.6	Problem: Dirac-delta Potentials 32
	3.7	Problem: Band Overlap 32
	3.8	Problem: Nearly Free Electrons in Two Dimensions 32
	3.9	Problem: Nearly Free-electron Bands 33
	3.10	Problem: Instability at the Fermi Wavenumber 33
	3.11	Problem: Electrons in 2D Nearly Free-electron Band 33
	3.12	Problem: Square Lattice 34
	3.13	Problem: Tight-binding Band in Two Dimensions 34
	3.14	Problem: Electrons in 2D Tight-binding Band 34
	3.15	Problem: Dirac-delta Potentials in Two Dimensions 34
	3.16	Problem: Graphene 35
	3.17	Problem: Effective Mass 35
	3.18	Problem: Cyclotron Frequency 35
	3.19	Problem: de Haas-van Alphen 35
	3.20	Problem: Fermi Energy 36
	4	Density of States 37
	4.1	Problem: Density of States 39
	4.2	Problem: Two-dimensional Density of States 40
	4.3	Problem: Two-dimensional Tight Binding 40
	4.4	Problem: Tight Binding from One to Three Dimensions 40
	4.5	Problem: Crossover to Quasi-one-dimensional Metal 41
	4.6	Problem: Phonon Mode of Two-dimensional System 42
	4.7	Problem: Saddle Point 42
	4.8	Problem: Density of States in Superconductors 43
	4.9	Problem: Energy Gap 43

4.10	Problem: Density of States for Hybridized Bands 43
4.11	Problem: Infinite-dimensional DOS 44
4.12	Problem: Two- to Three-dimensional Crossover 44
4.13	Problem: One- to Two-dimensional Crossover 45
4.14	Problem: Carbon Nanotube 45
5	Elementary Excitations 47
5.1	Problem: Tight-binding Model 50
5.2	Problem: Impurity State in the One-dimensional Tight-binding
	Model 51
5.3	Problem: Hybridization of Energy Bands 51
5.4	Problem: Polarons 52
5.5	Problem: Polaritons 52
5.6	Problem: Excitons 52
5.7	Problem: Holstein-Primakoff Transformation 53
5.8	Problem: Dyson-Maleev Representation 53
5.9	Problem: Spin Waves 53
5.10	Problem: Spin Waves Again 54
5.11	Problem: Anisotropic Heisenberg Model 54
5.12	Problem: Solitons 54
5.13	Problem: Dirac Fermions in Graphene 56
6	Thermodynamics of Noninteracting Quasiparticles 57
6.1	Problem: Specific Heat of Metals and Insulators 64
6.2	Problem: Number of Phonons 64
6.3	Problem: Energy of the Phonon Gas 64
6.4	Problem: Bulk Modulus of the Phonon Gas 64
6.5	Problem: Phonons in One Dimension 64
6.6	Problem: Electron-Hole Symmetry 65
6.7	Problem: Entropy of the Noninteracting Electron Gas 65
6.8	Problem: Free Energy with Gap at the Fermi Energy 65
6.9	Problem: Bulk Modulus at $T = 0$ 66
6.10	Problem: Temperature Dependence of the Bulk Modulus 66
6.11	Problem: Chemical Potential of the Free-electron Gas 66
6.12	Problem: EuO Specific Heat 66
6.13	Problem: Magnetization at Low Temperatures 66
6.14	Problem: Electronic Specific Heat 66
6.15	Problem: Quantum Hall Effect 67
7	Transport Properties 69
7.1	Problem: Temperature-dependent Resistance 76
7.2	Problem: Conductivity Tensor 76
7.3	Problem: Montgomery Method 76
7.4	Problem: Anisotropic Layer 77
7.5	Problem: Two-charge-carrier Drude Model 78

VIII	Contents	
	7.6	Problem: Thermal Conductivity 78
	7.7	Problem: Residual Resistivity 78
	7.8	Problem: Electric and Heat Transport 79
	7.9	Problem: Conductivity of Tight-binding Band 79
	7.10	Problem: Hall Effect in Two-dimensional Metals 80
	7.11	Problem: Free-electron Results from the Boltzmann Equations 80
	7.12	Problem: $p-n$ Junctions 80
	7.13	Problem: Mott–Ioffe–Regel 81
	8	Optical Properties 83
	8.1	Problem: Reflectivity and Transmission: Multiple Interfaces 93
	8.2	Problem: Group Velocity 93
	8.3	Problem: Tinkham Formula 94
	8.4	Problem: Transmission of a Thin Superconductor 94
	8.5	Problem: Fourier Transform Infrared Spectroscopy 95
	8.6	Problem: Sum Rule: Dielectric Constant 96
	8.7	Problem: Optical Mode of KBr 96
	8.8	Problem: Direct-gap Semiconductor 96
	8.9	Problem: Inversion Symmetry 97
	8.10	Problem: Frequency-dependent Conductivity 97
	8.11	Problem: Frequency-dependent Response of a Superconductor 97
	8.12	Problem: Optical Conductivity Tensor 98
	8.13	Problem: Joint Density of States in One Dimension 98
	8.14	Problem: One-dimensional Semiconductor 98
	8.15	Problem: Conductivity of Graphene 99
	8.16	Problem: Bloch Oscillations 99
	9	Interactions and Phase Transitions 101
	9.1	Problem: Spontaneous Polarization 105
	9.2	Problem: Divergent Susceptibility 106
	9.3	Problem: Large-U Hubbard Model 106
	9.4	Problem: Infinite-range Hubbard Model 107
	9.5	Problem: Stoner Model 107
	9.6	Problem: One-dimensional Electron System 107
	9.7	Problem: Peierls Distortion 108
	9.8	Problem: Singularity at 2k _F 108
	9.9	Problem: Susceptibility of a One-dimensional Electron Gas 109
	9.10	Problem: Critical Temperature in Mean Field Approximation 109
	9.11	Problem: Instability of Half-filled Band 109
	9.12	Problem: Screening of an Impurity Charge 110
	9.13	Problem: Fermi Surface Nesting in Two Dimensions 110
	9.14	Problem: Fermi Surface Nesting in Quasi-one-dimension 111
	9.15	Problem: Anderson Model 112
	9.16	Problem: Collective Jahn–Teller Distortion 113

10	Mesoscopic and Nanoscale Systems 115
10.1	Problem: Differential Conductance of a Tunnel Junction 122
10.2	Problem: Sharvin Formula 122
10.3	Problem: Ballistic Transport 123
10.4	Problem: Tunneling from a Ballistic Conductor 123
10.5	Problem: Reflectivity of a Lattice Defect 124
10.6	Problem: Two Scatterers: Incoherent Propagation 125
10.7	Problem: Two Scatterers: Coherent Propagation 125
10.8	Problem: Strong Localization 126
10.9	Problem: Coulomb Blockade 126
10.10	Problem: Single-atom Transistor 127
Part II	Solutions to Problems 129
11	Crystal Structures 131
11.1	Solution: Symmetries 131
11.2	Solution: Rotations 131
11.3	Solution: Copper Oxide Layers 132
11.4	Solution: Graphite 133
11.5	Solution: Structure of A_xC_{60} 133
11.6	Solution: hcp and fcc Structures 134
11.7	Solution: hcp and bcc Structures 135
11.8	Solution: Structure Factor of A _x C ₆₀ 136
11.9	Solution: Neutron Diffraction Device 137
11.10	Solution: Linear Array of Emitters, Finite Size Effects 137
11.11	Solution: Linear Array of Emitters: Superlattice 139
11.12	Solution: Powder Diffraction of hcp and fcc Crystals 140
11.13	Solution: Momentum Resolution 141
11.14	Solution: Finite Size Effects 143
11.15	Solution: Random Displacement 145
11.16	Hint: Vacancies 146
11.17	Hint: Integrated Scattering Intensity 146
12	Interatomic Forces and Lattice Vibrations 147
12.1	Solution: Madelung Constant 147
12.2	Solution: NaCl Bulk Modulus 149
12.3	Hint: Madelung with Screened Potential 151
12.4	Solution: Triple-axis Spectrometer 151
12.5	Solution: Phonons in Silicon 151
12.6	Solution: Linear Array of Emitters: Phonons 152
12.7	Hint: Long-range Interaction 152
12.8	Solution: Mass Defect 153
12.9	Solution: Debye Frequency 154
12.10	Solution: Vibrations of a Square Lattice 155
12.11	Solution: Grüneisen Parameter 156

X	Contents	
	12.12	Solution: Diatomic Chain 157
	12.13	Hint: Damped Oscillation 159
	12.14	Solution: Two-dimensional Debye 159
	12.15	Solution: Soft Optical Phonons 160
	12.16	Hint: Soft Phonons Again 162
	12.17	Solution: Nanowire Phonons 162
	13	Electronic Band Structure 163
	13.1	Solution: Nearly Free Electrons in One Dimension 163
	13.2	Solution: Eigenfunctions of Nearly Free Electrons in One Dimension 164
	13.3	Solution: Tight-binding Hamiltonian 166
	13.4	Solution: Nearly Free Electrons in Dirac-delta Potentials 166
	13.5	Solution: Tight binding in Dirac-delta Potentials 166
	13.6	Solution: Dirac-delta Potentials 168
	13.7	Solution: Band Overlap 171
	13.8	Solution: Nearly Free Electrons in Two Dimensions 172
	13.9	Solution: Nearly Free-electron Bands 174
	13.10	Solution: Instability at the Fermi Wavenumber 174
	13.11	Solution: Electrons in 2D Nearly Free-electron Band 176
	13.12	Solution: Square Lattice 178
	13.13	Solution: Tight-binding Band in Two Dimensions 179
	13.14	Solution: Electrons in 2D Tight-binding Band 180
	13.15	Solution: Dirac-delta Potentials in Two Dimensions 181
	13.16	Hint: Graphene 181
	13.17	Hint: Effective Mass 182
	13.18	Hint: Cyclotron Frequency 184
	13.19	Solution: de Haas-van Alphen 184
	13.20	Hint: Fermi Energy 184
	14	Density of States 187
	14.1	Solution: Density of States 187
	14.2	Solution: Two-dimensional Density of States 187
	14.3	Solution: Two-dimensional Tight-binding 188
	14.4	Solution: Tight-binding from One to Three Dimensions 189
	14.5	Solution: Crossover to Quasi-one-dimensional Metal 191
	14.6	Solution: Phonon Mode of Two-dimensional System 193
	14.7	Solution: Saddle Point 194
	14.8	Solution: Density of States in Superconductors 196
	14.9	Solution: Energy Gap 197
	14.10	Solution: Density of States for Hybridized Bands 197
	14.11	Solution: Infinite-dimensional DOS 199
	14.12	Solution: Two- to Three-dimensional Crossover 200
	14.13	Solution: One- to Two-dimensional Crossover 201
	14.14	Solution: Carbon Nanotube 202

15	Elementary Excitations 203
15.1	Solution: Tight-binding Model 203
15.2	Solution: Impurity State in the One-dimensional Tight-binding
	Model 205
15.3	Solution: Hybridization of Energy Bands 206
15.4	Solution: Polarons 208
15.5	Solution: Polaritons 210
15.6	Hint: Excitons 211
15.7	Solution: Holstein-Primakoff Transformation 212
15.8	Hint: Dyson–Maleev Representation 212
15.9	Solutions: Spin Waves 212
15.10	Solution: Spin Waves Again 214
15.11	Solution: Anisotropic Heisenberg Model 214
15.12	Hint: Solitons 215
15.13	Solution: Dirac Fermions in Graphene 216
16	Thermodynamics of Noninteracting Quasiparticles 217
16.1	Solution: Specific Heat of Metals and Insulators 217
16.2	Solution: Number of Phonons 217
16.3	Solution: Energy of the Phonon Gas 218
16.4	Solution: Bulk Modulus of the Phonon Gas 220
16.5	Hint: Phonons in One Dimension 221
16.6	Solution: Electron–Hole Symmetry 221
16.7	Solution: Entropy of the Noninteracting Electron Gas 223
16.8	Solution: Free Energy with Gap at the Fermi Energy 224
16.9	Solution: Bulk Modulus at $T = 0$ 226
16.10	Solution: Temperature Dependence of the Bulk Modulus 226
16.11	Solution: Chemical Potential of the Free-electron Gas 227
16.12	Solution: EuO Specific Heat 229
16.13	Hint: Magnetization at Low Temperatures 230
16.14	Solution: Electronic Specific Heat 230
16.15	Solution: Quantum Hall Effect 232
17	Transport Properties 235
17.1	Solution: Temperature-dependent Resistance 235
17.2	Solution: Conductivity Tensor 236
17.3	Solution: Montgomery Method 238
17.4	Solution: Anisotropic Layer 238
17.5	Solution: Two-charge-carrier Drude Model 240
17.6	Solution: Thermal Conductivity 241
17.7	Hint: Residual Resistivity 243
17.8	Solution: Electric and Heat Transport 243
17.9	Solution: Conductivity of Tight-binding Band 244

XII	Contents

17.10	Solution: Hall Effect in Two-dimensional Metals 246
17.11	Solution: Free-electron Results from the Boltzmann Equations 248
17.12	Solution: $p-n$ Junctions 250
17.13	Solution: Mott–Ioffe–Regel 251
18	Optical Properties 253
18.1	Solution: Reflectivity and Transmission: Multiple Interfaces 253
18.2	Solution: Group Velocity 254
18.3	Solution: Tinkham Formula 255
18.4	Solution: Transmission of a Thin Superconductor 256
18.5	Solution: Fourier Transform Infrared Spectroscopy 257
18.6	Solution: Sum Rule: Dielectric Constant 257
18.7	Solution: Optical Mode of KBr 257
18.8	Solution: Direct-gap Semiconductor 258
18.9	Solution: Inversion Symmetry 259
18.10	Solution: Frequency-dependent Conductivity 260
18.11	Solution: Frequency-dependent Response of a Superconductor 263
18.12	Solution: Optical Conductivity Tensor 264
18.13	Solution: Joint Density of States in One Dimension 265
18.14	Solution: One-dimensional Semiconductor 266
18.15	Solution: Conductivity of Graphene 268
18.16	Solution: Bloch Oscillations 269
19	Interactions and Phase Transitions 273
19.1	Solution: Spontaneous Polarization 273
19.2	Solution: Divergent Susceptibility 274
19.3	Solution: Large-U Hubbard Model 275
19.4	Solution: Infinite-range Hubbard Model 278
19.5	Hint: Stoner Model 279
19.6	Solution: One-dimensional Electron System 279
19.7	Solution: Peierls Distortion 281
19.8	Solution: Singularity at $2k_{\rm F}$ 282
19.9	Solution: Susceptibility of a One-dimensional Electron Gas 283
19.10	Solution: Critical Temperature in Mean Field Approximation 284
19.11	Solution: Instability of Half-filled Band 284
19.12	Solution: Screening of an Impurity Charge 285
19.13	Solution: Fermi Surface Nesting in Two Dimensions 287
19.14	Solution: Fermi Surface Nesting in Quasi One Dimension 288
19.15	Solution: Anderson Model 291
19.16	Solution: Collective Jahn–Teller Distortion 294
20	Mesoscopic and Nano-scale Systems 297
20.1	
	Solution: Differential Conductance of a Tunnel Junction 297
20.2	Solution: Differential Conductance of a Tunnel Junction 297 Solution: Sharvin Formula 297

20.4	Solution: Tunneling from a Ballistic Conductor 299
20.5	Solution: Reflectivity of a Lattice Defect 299
20.6	Solution: Two Scatterers: Incoherent Propagation 300
20.7	Solution: Two Scatterers: Coherent Propagation 301
20.8	Solution: Strong Localization 301
20.9	Solution: Coulomb Blockade 302
20.10	Solution: Single-atom Transistor 303
	References 305
	Index 307