APPLIED REGRESSION ANALYSIS GENERALIZED LINEAR MODELS

"The strength of this text is the **unified presentation** of several regression topics that provides the student with a global perspective on regression analysis. The student is well served with this unified approach, as it facilitates deeper research on any one topic with more advanced texts."

-E. C. Hedberg, Arizona State University

"This text is a one-stop shop for me for my first year stats sequence for students in our program. Those wanting the technical detail will be satisfied; those wanting an excellent explanation of these methods using real-world examples and approachable language will also be satisfied."

-Corey S. Sparks, The University of Texas at San Antonio

"I have enjoyed using previous editions of this text and look forward to using this edition. It covers all key topics, and quite a few advanced ones, in one well-written text." —Michael S. Lynch, University of Georgia

PRAISE FOR THE PREVIOUS EDITIONS

"In summary, this is an excellent text on regression applications and methods, written with authority, lucidity, and eloquence. The second edition provides substantive and topical updates, and makes the book suitable for courses designed to emphasize both the classical and the modern aspects of regression."

> -Journal of the American Statistical Association (review of the second edition)

"Even though the book is written with social scientists as the target audience, the depth of material and how it is conveyed give it far broader appeal. Indeed, I recommend it as a **useful** learning text and resource for researchers and students in any field that applies regression or linear models (that is, most everyone), including courses for undergraduate statistics majors. The author is to be commended for giving us this book, which I trust will find a wide and enduring readership."

—Journal of the American Statistical Association (review of the first edition)

"[T]his wonderfully comprehensive book focuses on regression analysis and linear models.... We enthusiastically recommend this book—having used it in class, we know that it is thorough and well-liked by students."

-Chance (review of the first edition)

Cover illustration: John Fo

WWW.sagepublications.com

Contents

Preface	XV
About the Author	xxiv
 1. Statistical Models and Social Science 1.1 Statistical Models and Social Reality 1.2 Observation and Experiment 1.3 Populations and Samples Exercise Summary Recommended Reading 1. DATA CRAFT 	1 1 4 8 10 10 11 11 12
2. What Is Regression Analysis?	13
2.1 Preliminaries2.2 Naive Nonparametric Regression2.3 Local AveragingExerciseSummary	15 18 22 25 26
3. Examining Data	28
 3.1 Univariate Displays 3.1.1 Histograms 3.1.2 Nonparametric Density Estimation 3.1.3 Quantile-Comparison Plots 3.1.4 Boxplots 3.2 Plotting Bivariate Data 3.3 Plotting Multivariate Data 3.3.1 Scatterplot Matrices 3.3.2 Coded Scatterplots 3.3.3 Three-Dimensional Scatterplots 3.3.4 Conditioning Plots Exercises Summary Recommended Reading 	30 30 33 37 41 44 47 48 50 50 50 51 53 53 53
4. Transforming Data	55
4.1 The Family of Powers and Roots4.2 Transforming Skewness4.3 Transforming Nonlinearity	55 59 63

4.4 Transforming Nonconstant Spread	70
4.5 Transforming Proportions	72
4.6 Estimating Transformations as Parameters	* 76
Exercises	78
Summary	- 79
Recommended Reading	80
II. LINEAR MODELS AND LEAST SQU	ARES 81
5. Linear Least-Squares Regression	82
5.1 Simple Regression	83
5.1.1 Least-Squares Fit	83
5.1.2 Simple Correlation	87
5.2 Multiple Regression	92
5.2.1 Two Explanatory Variables	92
5.2.2 Several Explanatory Variables	96
5.2.3 Multiple Correlation	98
5.2.4 Standardized Regression Coefficie	nts · 100
Exercises	102
Summary	105
6. Statistical Inference for Regression	106
6.1 Simple Regression	106
6.1.1 The Simple-Regression Model	106
6.1.2 Properties of the Least-Squares Est	timator 109
6.1.3 Confidence Intervals and Hypothes	sis Tests 111
6.2 Multiple Regression	112
6.2.1 The Multiple-Regression Model	112
6.2.2 Confidence Intervals and Hypothes	sis Tests 113
6.3 Empirical Versus Structural Relations	117
6.4 Measurement Error in Explanatory Variabl	les* 120
Exercises	123
Summary	126
7. Dummy-Variable Regression	128
7.1 A Dichotomous Factor	128
7.2 Polytomous Factors	133
7.2.1 Coefficient Quasi-Variances*	138
7.3 Modeling Interactions	140
7.3.1 Constructing Interaction Regressor	rs 141
7.3.2 Internationa With Dolutemour Fact	144
7.3.4 Interpreting Dummy Pagrossion N	Addels With Interactions 145
7.3.5 Hypothesis Tests for Main Effects	and Interactions 145
7.4 A Caution Concerning Standardized Coeff	icients 140
Exercises	150
Summary	150
9 Analysis of Variance	151
9.1 One When A 1 . CV .	153
8.1 One-way Analysis of Variance	153
8.1.2 The One Way ANOVA Model	Jational Presuge 155
0.1.2 THE CHE-WAY AND VA WOULD	1.30

8.2 Two-Way Analysis of Variance	159
8.2.1 Patterns of Means in the Two-Way Classification	160
8.2.2 Two-Way ANOVA by Dummy Regression	166
8.2.3 The Two-Way ANOVA Model	168
8.2.4 Fitting the Two-Way ANOVA Model to Data	170
8.2.5 Testing Hypotheses in Two-Way ANOVA	172
8.2.6 Equal Cell Frequencies	174
8.2.7 Some Cautionary Remarks	175
8.3 Higher-Way Analysis of Variance	177
8.3.1 The Three-Way Classification	177
8.3.2 Higher-Order Classifications	180
8.3.3 Empty Cells in ANOVA	186
8.4 Analysis of Covariance	187
8.5 Linear Contrasts of Means	190
Exercises	194
Summary	200
Statistical Theory for Linear Models*	202
Statistical Theory for Linear Wodels	202
9.1 Linear Models in Matrix Form	202
9.1.1 Dummy Regression and Analysis of Variance	203
9.1.2 Linear Contrasts	206
9.2 Least-Squares Fit	208
9.2.1 Deficient-Rank Parametrization of Linear Models	210
9.3 Properties of the Least-Squares Estimator	211
9.3.1 The Distribution of the Least-Squares Estimator	211
9.5.2 The Gauss-Markov Theorem	212
9.5.5 Maximum-Likelinood Estimation	214
9.4 Statistical Interence for Individual Coofficients	215
9.4.1 Inference for Several Coefficients	215
9.4.2 Interence for Several Coefficients	210
9.4.4 Joint Confidence Regions	219
0.5 Multivariate Linear Models	220
9.6 Random Regressors	223
9.7 Specification Error	227
9.8 Instrumental Variables and Two-Stage Least Squares	22)
9.8.1 Instrumental-Variables Estimation in Simple Regression	231
9.8.2 Instrumental-Variables Estimation in Multiple Regression	232
9.8.3 Two-Stage Least Squares	234
Exercises	236
Summary	241
Recommended Reading	243
10 The Vector Geometry of Linear Models*	245
10.1.0' 1 D	243
10.1 Simple Regression	245
10.1.1 Variables in Mean Deviation Form	247
10.2 Multiple Degrees of Freedom	250
10.2 Intuitiple Regression	252
10.5 Estimating the Error Variance	250
Exercises	258
	/011

Summary	262
Recommended Reading	264
	201
III. LINEAR-MODEL DIAGNOSTICS	265
11. Unusual and Influential Data	266
11.1 Outliers, Leverage, and Influence	266
11.2 Assessing Leverage: Hat-Values	270
11.3 Detecting Outliers: Studentized Residuals	272
11.3.1 Testing for Outliers in Linear Models	273
11.3.2 Anscombe's Insurance Analogy	274
11.4 Measuring Influence	276
11.4.1 Influence on Standard Errors	277
11.4.2 Influence on Collinearity	280
11.5 Numerical Cutoffs for Diagnostic Statistics	280
11.5.1 Hat-Values	281
11.5.2 Studentized Residuals	281
11.5.3 Measures of Influence	281
11.6 Joint Influence	282
11.6.1 Added-Variable Plots	282
11.6.2 Forward Search	286
11.7 Should Unusual Data Be Discarded?	288
11.8 Some Statistical Details*	289
11.8.1 Hat-Values and the Hat-Matrix	289
11.8.2 The Distribution of the Least-Squares Residuals	290
11.8.3 Deletion Diagnostics	290
11.8.4 Added-Variable Plots and Leverage Plots	291
Exercises	293
Summary	294
Recommended Reading	294
12. Diagnosing Non-Normality, Nonconstant Error Variance, and Nonlinearity	296
12 1 Non-Normally Distributed Errors	297
12.1 1 Confidence Envelopes by Simulated Sampling*	300
12.1.1 Connected Envelopes by Simulated Sampling	301
12.2 1 Residual Plots	301
12.2.1 Residual Flots 12.2.2 Weighted Least-Squares Estimation*	304
12.2.2 Weighted-Least-Squares Estimation 12.2.3 Correcting OI S Standard Errors for Nonconstant Variance*	305
12.2.5 Concerning OLS Standard Lifers for Rence Affects the OLS Estimator*	306
12.2.4 How Nonconstant Error variance Arrects the OES Estimator	307
12.5 Noninearity	308
12.3.2 Component Plus Residual Plots for Models With Interactions	313
12.3.2 Component-Flus-Residual Flois for Models with Interactions	313
12.4 Discrete Data	314
12.4 Discrete Data 12.4.1 Testing for Nonlinearity ("Lack of Fit")	310
12.4.2 Testing for Nonconstant Error Variance	310
12.5 Maximum Likelihood Methoda*	222
12.5 1 Box-Cox Transformation of V	323
12.5.1 DOX-COX Transformation of the Va	324
12.5.2 DOX-THEWEIT TRAISTOFTIATION OF THE AS	320
12.6.5 Nonconstant Error variance Revisited	221
12.0 Structural Dimension	331

Exercises	334
Summary	338
Recommended Reading	339
13. Collinearity and Its Purported Remedies	341
13.1 Detecting Collinearity	341
13.1.1 Principal Components*	342
13.1.2 Generalized Variance Inflation*	340
13.2 Coping With Collinearity: No Quick Fix	358
13.2.1 Model Respecification	359
13.2.2 Variable Selection	359
13.2.3 Biased Estimation	361
13.2.4 Prior Information About the Regression Coefficients	364
13.2.5 Some Comparisons	365
Exercises	366
Summary	368
IV GENERALIZED LINEAR MODELS	360
	309
14. Logit and Probit Models for Categorical Response Variables	370
14.1 Models for Dichotomous Data	370
14.1.1 The Linear-Probability Model	372
14.1.2 Transformations of π : Logit and Probit Models	375
14.1.3 An Unobserved-Variable Formulation	379
14.1.4 Logit and Probit Models for Multiple Regression	380
14.1.5 Estimating the Linear Logit Model*	389
14.2 Models for Polytomous Data	392
14.2.1 The Polytomous Logit Model	392
14.2.2 Declared Logit and Brahit Madala	399
14.2.3 Ordered Logit and Front Models	400
14.3 Discrete Explanatory Variables and Contingency Tables	407
14.3.1 The Binomial Logit Model*	408
Exercises /	411
Summary	415
Recommended Reading	416
15 Generalized Linear Models	410
15.1 The Structure of Congrelized Linear Medels	410
15.1 The Structure of Generalized Linear Models	418
15.2 Generalized Linear Models for Counts	425
15.2 Generalized Elitear Wodels for Counts	427
15.2.2.1 Models for Contingency Tables	431
15.3 Statistical Theory for Generalized Linear Models*	434
15.3 1 Exponential Families	443
15.3.2 Maximum-Likelihood Estimation of Generalized Linear Models	445
15.3.3 Hypothesis Tests	443
15.3.4 Effect Displays	453
15.4 Diagnostics for Generalized Linear Models	453
15.4.1 Outlier, Leverage, and Influence Diagnostics	454
15.4.2 Nonlinearity Diagnostics	456

15.4.3 Collinearity Diagnostics*	459
15.5 Analyzing Data From Complex Sample Surveys	460
Exercises	464
Summary	468
Recommended Reading	471
V. EXTENDING LINEAR AND GENERALIZED LINEAR MODELS	473
16. Time-Series Regression and Generalized Least Squares*	474
16.1 Generalized Least-Squares Estimation	475
16.2 Serially Correlated Errors	476
16.2.1 The First-Order Autoregressive Process	477
16.2.2 Higher-Order Autoregressive Processes	481
16.2.3 Moving-Average and Autoregressive-Moving-Average Processes	482
16.2.4 Partial Autocorrelations	485
16.3 GLS Estimation With Autocorrelated Errors	485
16.3.1 Empirical GLS Estimation	487
16.3.2 Maximum-Likelihood Estimation	487
16.4 Correcting OLS Inference for Autocorrelated Errors	488
16.5 Diagnosing Serially Correlated Errors	489
16.6 Concluding Remarks	494
Exercises	496
Summary	499
Recommended Reading	500
17. Nonlinear Regression	502
17.1 Polynomial Regression	503
17.1.1 A Closer Look at Quadratic Surfaces*	506
17.2 Piece-wise Polynomials and Regression Splines	507
17.3 Transformable Nonlinearity	512
17.4 Nonlinear Least Squares*	515
17.4.1 Minimizing the Residual Sum of Squares	516
17.4.2 An Illustration: U.S. Population Growth	519
Exercises	521
Summary	526
Recommended Reading	527
18. Nonparametric Regression	528
18.1 Nonparametric Simple Regression: Scatterplot Smoothing	528
18.1.1 Kernel Regression	528
18.1.2 Local-Polynomial Regression	532
18.1.3 Smoothing Splines*	549
18.2 Nonparametric Multiple Regression	550
18.2.1 Local-Polynomial Multiple Regression	550
18.2.2 Additive Regression Models	563
18.3 Generalized Nonparametric Regression	572
18.3.1 Local Likelihood Estimation*	572
18.3.2 Generalized Additive Models	575
Exercises	5/8
Summary	580
Recommended Reading	282

19. Robust Regression*	586
19.1 <i>M</i> Estimation	586
19.1.1 Estimating Location	586
19.1.2 M Estimation in Regression	592
19.2 Bounded-Influence Regression	595
19.3 Quantile Regression	597
19.4 Robust Estimation of Generalized Linear Models	600
19.5 Concluding Remarks	601
Exercises	601
Summary	603
Recommended Reading	604
20. Missing Data in Regression Models	605
20.1 Missing Data Basics	606
20.1.1 An Illustration	607
20.2 Traditional Approaches to Missing Data	609
20.3 Maximum-Likelihood Estimation for Data Missing at Random*	613
20.3.1 The EM Algorithm	616
20.4 Bayesian Multiple Imputation	619
20.4.1 Inference for Individual Coefficients	621
20.4.2 Inference for Several Coefficients*	624
20.4.3 Practical Considerations	625
20.4.4 Example: A Regression Model for Infant Mortality	626
20.5 Selection Bias and Censoring	629
20.5.1 Truncated- and Censored-Normal Distributions	629
20.5.2 Heckman's Selection-Regression Model	632
20.5.3 Censored-Regression Models	637
Exercises	639
Summary	643
Recommended Reading	646
21. Bootstrapping Regression Models	647
21.1 Bootstrapping Basics	647
21.2 Bootstrap Confidence Intervals	655
21.2.1 Normal-Theory Intervals	655
21.2.2 Percentile Intervals	655
21.2.3 Improved Bootstrap Intervals	656
21.3 Bootstrapping Regression Models	658
21.4 Bootstrap Hypothesis Tests*	660
21.5 Bootstrapping Complex Sampling Designs	662
21.6 Concluding Remarks	663
Exercises	664
Summary	667
Recommended Reading	668
22. Model Selection, Averaging, and Validation	669
22.1 Model Selection	669
22.1.1 Model Selection Criteria	671
22.1.2 An Illustration: Baseball Salaries	681
22.1.3 Comments on Model Selection	683

22.2 Model Averaging*	685
22.2.1 Application to the Baseball Salary Data	687
22.2.2 Comments on Model Averaging	687
22.3 Model Validation	690
22.3.1 An Illustration: Refugee Appeals	691
22.3.2 Comments on Model Validation	693
Exercises	694
Summary	696
Recommended Reading	698
VI. MIXED-EFFECTS MODELS	699
23. Linear Mixed-Effects Models for Hierarchical and Longitudinal Data	700
23.1 Hierarchical and Longitudinal Data	701
23.2 The Linear Mixed-Effects Model	702
23.3 Modeling Hierarchical Data	704
23.3.1 Formulating a Mixed Model	708
23.3.2 Random-Effects One-Way Analysis of Variance	710
23.3.3 Random-Coefficients Regression Model	712
23.3.4 Coefficients-as-Outcomes Model	714
23.4 Modeling Longitudinal Data	717
23.5 Wald Tests for Fixed Effects	724
23.6 Likelihood-Ratio Tests of Variance and Covariance Components	726
23.7 Centering Explanatory Variables, Contextual Effects, and Fixed-Effects Models	727
23.7.1 Fixed Versus Random Effects	730
23.8 BLUPs	733
23.9 Statistical Details*	734
23.9.1 The Laird-Ware Model in Matrix Form	734
23.9.2 Wald Tests Revisited	737
Exercises	738
Summary	740
Recommended Reading	741
24. Generalized Linear and Nonlinear Mixed-Effects Models	743
24.1 Generalized Linear Mixed Models	743
24.1 Example: Migraine Headaches	745
24.1.2 Statistical Details*	749
24.1.2 Statistical Details 24.2 Nonlinear Mixed Models*	740
24.2 Nominical Windows 24.2 1 Example: Recovery From Coma	751
24.2.2 Estimating Nonlinear Mixed Models	755
Evercises	757
Summary	757
Recommended Reading	758
Recommended Reading	130
Appendix A	759
References	762
Author Index	773
Subject Index	777
Data Set Index	791