Praise for the First Edition "... [this book] should be on the shelf of everyone interested in ... longitudinal data analysis."

-Journal of the American Statistical Association

# Features newly developed topics and applications of the analysis of longitudinal data

Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences.

The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The *Second Edition* features six newly added chapters that explore topics currently evolving in the field, including:

- Fixed effects and mixed effects models
- Marginal models and generalized estimating equations
- Approximate methods for generalized linear mixed effects models
- Multiple imputation and inverse probability weighted methods
- Smoothing methods for longitudinal data
- Sample size and power

Each chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS<sup>®</sup>, Stata<sup>®</sup>, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material.

With its strong emphasis on multidisciplinary applications and the interpretation of results, *Applied Longitudinal Analysis*, *Second Edition* is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.

**GARRETT M. FITZMAURICE, SeD,** is Professor in the Department of Biostatistics at the Harvard School of Public Health and Director of the Laboratory for Psychiatric Biostatistics at McLean Hospital. A Fellow of the American Statistical Association and advisor for the Wiley Series in Probability and Statistics, Dr. Fitzmaurice's areas of research interest include statistical methods for analyzing discrete longitudinal data and methods for handling missing data.

NAN M. LAIRD, PHD, is Professor of Biostatistics at the Harvard School of Public Health. A Fellow of the American Statistical Association and Institute of Mathematical Sciences, she has published extensively in the areas of statistical genetics, longitudinal studies, missing or incomplete data, and analysis of multiple informant data.

JAMES H. WARE, PHD, is Frederick Mosteller Professor of Biostatistics at the Harvard School of Public Health. A Fellow of the American Statistical Association and statistical consultant to the *New England Journal of Medicine*, he has made significant contributions to the development of statistical methods for the design and analysis of longitudinal studies.

Subscribe to our free Statistics eNewsletter at wiley.com/enewsletters

Visit wiley.com/statistics





# Contents

Statistical infe

xvii

xxi

XXV

### Preface

**Preface to First Edition** 

Acknowledgments

### Part I Introduction to Longitudinal and Clustered Data

| L | Lon | gitudinal and Clustered Data               | 1   |
|---|-----|--------------------------------------------|-----|
|   | 1.1 | Introduction                               | 1   |
|   | 1.2 | Longitudinal and Clustered Data            | 2   |
|   | 1.3 | Examples                                   | 5   |
|   | 1.4 | Regression Models for Correlated Responses | 13  |
|   | 1.5 | Organization of the Book                   | 16  |
|   | 1.6 | Further Reading                            | 18  |
| 2 | Lon | gitudinal Data: Basic Concepts             | 19  |
|   | 2.1 | Introduction                               | 19  |
|   | 2.2 | Objectives of Longitudinal Analysis        | 19  |
|   | 2.3 | Defining Features of Longitudinal Data     | 22  |
|   |     |                                            | vii |

| 2.4 | Example: Treatment of Lead-Exposed Children Trial | 31 |
|-----|---------------------------------------------------|----|
| 2.5 | Sources of Correlation in Longitudinal Data       | 36 |
| 2.6 | Further Reading                                   | 44 |
|     | Problems                                          | 44 |
|     |                                                   |    |

### Part II Linear Models for Longitudinal Continuous Data

| 3 | Ove  | rview of Linear Models for Longitudinal Data              | 49  |
|---|------|-----------------------------------------------------------|-----|
|   | 3.1  | Introduction                                              | 49  |
|   | 3.2  | Notation and Distributional Assumptions                   | 50  |
|   | 3.3  | Simple Descriptive Methods of Analysis                    | 62  |
|   | 3.4  | Modeling the Mean                                         | 72  |
|   | 3.5  | Modeling the Covariance                                   | 74  |
|   | 3.6  | Historical Approaches                                     | 76  |
|   | 3.7  | Further Reading                                           | 86  |
| 4 | Eati | motion and Statistical Information                        | 9   |
| 4 |      | mation and Statistical Inference                          | 89  |
|   | 4.1  | Introduction                                              | 89  |
|   | 4.2  | Estimation: Maximum Likelihood                            |     |
|   | 4.3  | Missing Data Issues                                       | 94  |
|   | 4.4  | Statistical Inference                                     | 96  |
|   | 4.5  | Restricted Maximum Likelihood (REML) Estimation           | 101 |
|   | 4.6  | Further Reading                                           | 104 |
|   |      |                                                           |     |
| 5 | Mod  | leling the Mean: Analyzing Response Profiles              | 105 |
|   | 5.1  | Introduction                                              | 105 |
|   | 5.2  | Hypotheses Concerning Response Profiles                   | 107 |
|   | 5.3  | General Linear Model Formulation                          | 112 |
|   | 5.4  | Case Study                                                | 117 |
|   | 5.5  | One-Degree-of-Freedom Tests for Group by Time Interaction | 120 |
|   | 5.6  | Adjustment for Baseline Response                          | 124 |
|   | 5.7  | Alternative Methods of Adjusting for Baseline             | C   |
|   |      | Response*                                                 | 128 |

|   | 5.8  | Strengths and Weaknesses of Analyzing Response                       | 124 |
|---|------|----------------------------------------------------------------------|-----|
|   | 50   | Profiles D. Cl                                                       | 134 |
|   | 5.9  | Computing: Analyzing Response Profiles<br>Using PROC MIXED in SAS    | 136 |
|   | 5.10 | Further Reading                                                      | 140 |
|   | 5.10 | Problems                                                             | 140 |
|   |      | <i>Frodiems</i>                                                      | 140 |
| 6 | Mod  | eling the Mean: Parametric Curves                                    | 143 |
|   | 6.1  | Introduction                                                         | 143 |
|   | 6.2  | Polynomial Trends in Time                                            | 144 |
|   | 6.3  | Linear Splines                                                       | 149 |
|   | 6.4  | General Linear Model Formulation                                     | 152 |
|   | 6.5  | Case Studies                                                         | 154 |
|   | 6.6  | Computing: Fitting Parametric Curves                                 |     |
|   |      | Using PROC MIXED in SAS                                              | 161 |
|   | 6.7  | Further Reading                                                      | 162 |
|   |      | Problems                                                             | 163 |
| 7 | Mod  | eling the Covariance                                                 | 165 |
|   | 7.1  | Introduction                                                         | 165 |
|   | 7.2  | Implications of Correlation among Longitudinal Data                  | 166 |
|   | 7.3  | Unstructured Covariance                                              | 168 |
|   | 7.4  | Covariance Pattern Models                                            | 169 |
|   | 7.5  | Choice among Covariance Pattern Models                               | 175 |
|   | 7.6  | Case Study                                                           | 180 |
|   | 7.7  | Discussion: Strengths and Weaknesses of Covariance<br>Pattern Models | 183 |
|   | 7.8  | Computing: Fitting Covariance Pattern Models                         |     |
|   |      | Using PROC MIXED in SAS                                              | 184 |
|   | 7.9  | Further Reading                                                      | 186 |
|   |      | Problems                                                             | 186 |
| 8 | Line | ar Mixed Effects Models                                              | 189 |
|   | 8.1  | Introduction                                                         | 189 |
|   | 8.2  | Linear Mixed Effects Models                                          | 194 |
|   | 8.3  | Random Effects Covariance Structure                                  | 201 |
|   | 8.4  | Two-Stage Random Effects Formulation                                 | 203 |
|   | 8.5  | Choice among Random Effects Covariance Models                        | 208 |
|   | 8.6  | Prediction of Random Effects                                         | 209 |

| V | COM | ITE | NTS  |
|---|-----|-----|------|
| • | COL | VIC | INIS |

|    | 8.7   | Prediction and Shrinkage*                                                                         | 211 |
|----|-------|---------------------------------------------------------------------------------------------------|-----|
|    | 8.8   | Case Studies                                                                                      | 213 |
|    | 8.9   | Computing: Fitting Linear Mixed Effects Models<br>Using PROC MIXED in SAS                         | 234 |
|    | 8.10  | Further Reading                                                                                   | 237 |
|    |       | Problems                                                                                          | 237 |
| 9  | Fixed | Effects versus Random Effects Models                                                              | 241 |
|    | 9.1   | Introduction                                                                                      | 241 |
|    | 9.2   | Linear Fixed Effects Models                                                                       | 241 |
|    | 9.3   | Fixed Effects versus Random Effects:<br>Bias-Variance Trade-off                                   | 246 |
|    | 9.4   | Resolving the Dilemma of Choosing Between<br>Fixed and Random Effects Models                      | 249 |
|    | 9.5   | Longitudinal and Cross-sectional Information                                                      | 252 |
|    | 9.6   | Case Study                                                                                        | 255 |
|    | 9.7   | Computing: Fitting Linear Fixed Effects Models<br>Using PROC GLM in SAS                           | 258 |
|    | 9.8   | Computing: Decomposition of Between-Subject and<br>Within-Subject Effects Using PROC MIXED in SAS | 260 |
|    | 9.9   | Further Reading                                                                                   | 262 |
|    |       | Problems                                                                                          | 262 |
| 10 | Resid | ual Analyses and Diagnostics                                                                      | 265 |
|    | 10.1  | Introduction                                                                                      | 265 |
|    | 10.2  | Residuals                                                                                         | 265 |
|    | 10.3  | Transformed Residuals                                                                             | 266 |
|    | 10.4  | Aggregating Residuals                                                                             | 269 |
|    | 10.5  | Semi-Variogram                                                                                    | 272 |
|    | 10.6  | Case Study                                                                                        | 273 |
|    | 10.7  | Summary                                                                                           | 285 |
|    | 10.8  | Further Reading                                                                                   | 286 |
|    |       | Problems                                                                                          | 287 |

## Part III Generalized Linear Models for Longitudinal Data

| 11 | Revie | ew of Generalized Linear Models                                          | 291     |
|----|-------|--------------------------------------------------------------------------|---------|
|    | 11.1  | Introduction                                                             | 291     |
|    | 11.2  | Salient Features of Generalized Linear Models                            | 292     |
|    | 11.3  | Illustrative Examples                                                    | 297     |
|    | 11.4  | Ordinal Regression Models                                                | 310     |
|    | 11.5  | Overdispersion                                                           | 319     |
|    | 11.6  | Computing: Fitting Generalized Linear Models<br>Using PROC GENMOD in SAS | 324     |
|    | 11.7  | <b>Overview of Generalized Linear Models*</b>                            | 327     |
|    | 11.8  | Further Reading                                                          | 335     |
|    |       | Problems                                                                 | 336     |
| 12 | Mar   | ginal Models: Introduction and Overview                                  | 341     |
|    | 12.1  | Introduction                                                             | 341     |
|    | 12.2  | Marginal Models for Longitudinal Data                                    | 342     |
|    | 12.3  | Illustrative Examples of Marginal Models                                 | 346     |
|    | 12.4  | Distributional Assumptions for Marginal Models*                          | 351     |
|    | 12.5  | Further Reading                                                          | 352     |
| 13 |       | ginal Models: Generalized Estimating                                     | 121-221 |
|    | -     | ations (GEE)                                                             | 353     |
|    | 13.1  | Introduction                                                             | 353     |
|    | 13.2  | Estimation of Marginal Models: Generalized<br>Estimating Equations       | 354     |
|    | 13.3  | Residual Analyses and Diagnostics                                        | 361     |
|    | 13.4  | Case Studies                                                             | 364     |
|    | 13.5  | Marginal Models and Time-Varying Covariates                              | 381     |
|    | 13.6  | Computing: Generalized Estimating Equations<br>Using PROC GENMOD in SAS  | 385     |
|    | 13.7  | Further Reading                                                          | 390     |
|    |       | Problems                                                                 | 391     |
| 14 | Gene  | eralized Linear Mixed Effects Models                                     | 395     |
|    | 14.1  | Introduction                                                             | 395     |
|    | 14.2  | Incorporating Random Effects in Generalized<br>Linear Models             | 396     |

|    | 14.3 | Interpretation of Regression Parameters                                         | 402 |
|----|------|---------------------------------------------------------------------------------|-----|
|    | 14.4 | Overdispersion                                                                  | 409 |
|    | 14.5 | Estimation and Inference                                                        | 410 |
|    | 14.6 | A Note on Conditional Maximum Likelihood                                        | 412 |
|    | 14.7 | Case Studies                                                                    | 414 |
|    | 14.8 | Computing: Fitting Generalized Linear Mixed Models<br>Using PROC GLIMMIX in SAS | 429 |
|    | 14.9 | Further Reading                                                                 | 433 |
|    |      | Problems                                                                        | 434 |
|    |      |                                                                                 |     |
| 15 | Gene | eralized Linear Mixed Effects Models: Approximate                               |     |

| Meth     | nods of Estimation                                     | 441 |
|----------|--------------------------------------------------------|-----|
| 15.1     | Introduction                                           | 441 |
| 15.2     | Penalized Quasi-Likelihood                             | 443 |
| 15.3     | Marginal Quasi-Likelihood                              | 445 |
| 15.4     | Cautionary Remarks on the Use of PQL and MQL           | 446 |
| 15.5     | Case Studies                                           | 452 |
| 15.6     | Computing: Fitting GLMMs Using PROC GLIMMIX in SAS     | 459 |
| 15.7     | Basis of PQL and MQL Approximations*                   | 466 |
| 15.8     | Further Reading                                        | 470 |
|          | Problems                                               | 471 |
|          |                                                        |     |
| S. C. L. | introduction and only in the state of the state of the |     |

|    | Meth | nods of Estimation                                 | 441 |
|----|------|----------------------------------------------------|-----|
|    | 15.1 | Introduction                                       | 441 |
|    | 15.2 | Penalized Quasi-Likelihood                         | 443 |
|    | 15.3 | Marginal Quasi-Likelihood                          | 445 |
|    | 15.4 | Cautionary Remarks on the Use of PQL and MQL       | 446 |
|    | 15.5 | Case Studies                                       | 452 |
|    | 15.6 | Computing: Fitting GLMMs Using PROC GLIMMIX in SAS | 459 |
|    | 15.7 | Basis of PQL and MQL Approximations*               | 466 |
|    | 15.8 | Further Reading                                    | 470 |
|    |      | Problems                                           | 471 |
| 16 | Cont | trasting Marginal and Mixed Effects Models         | 473 |
|    | 16.1 | Introduction                                       | 473 |
|    | 16.2 | Linear Models: A Special Case                      | 473 |
|    | 16.3 | Generalized Linear Models                          | 474 |
|    | 16.4 | Simple Numerical Illustration                      | 479 |
|    | 16.5 | Case Study                                         | 480 |
|    | 16.6 | Conclusion                                         | 484 |
|    | 16.7 | Further Reading                                    | 486 |

### Part IV Missing Data and Dropout

| 17 |       | ing Data and Dropout: Overview of Concepts                            |      |
|----|-------|-----------------------------------------------------------------------|------|
|    | and I | Methods                                                               | 489  |
|    | 17.1  | Introduction                                                          | 489  |
|    | 17.2  | Hierarchy of Missing Data Mechanisms                                  | 491  |
|    | 17.3  | Implications for Longitudinal Analysis                                | 499  |
|    | 17.4  | Dropout                                                               | 500  |
|    | 17.5  | Common Approaches for Handling Dropout                                | 506  |
|    | 17.6  | Bias of Last Value Carried Forward Imputation*                        | 511  |
|    | 17.7  | Further Reading                                                       | 513  |
| 18 | Miss  | ing Data and Dropout: Multiple Imputation                             |      |
|    | and   | Weighting Methods                                                     | 515  |
|    | 18.1  | Introduction                                                          | 515  |
|    | 18.2  | Multiple Imputation                                                   | 516  |
|    | 18.3  | Inverse Probability Weighted Methods                                  | 526  |
|    | 18.4  | Case Studies                                                          | 531  |
|    | 18.5  | "Sandwich" Variance Estimator Adjusting for<br>Estimation of Weights* | 541  |
|    | 18.6  | Computing: Multiple Imputation Using PROC MI in SAS                   | 542  |
|    | 18.7  | Computing: Inverse Probability Weighted (IPW)<br>Methods in SAS       | 547  |
|    | 18.8  | Further Reading                                                       | 550  |
| 26 |       | A La                              | 21.7 |
| Pa | rt V  | Advanced Topics for Longitudinal and Clustered D                      | Pata |
| 19 |       | othing Longitudinal Data: Semiparametric Regress                      |      |
|    | Mod   | Multilauri Data                                                       | 553  |
|    |       | Introduction                                                          | 553  |
|    | 19.2  | Penalized Splines for a Univariate Response                           | 554  |

| 19.3 | Case Study                              | 558 |
|------|-----------------------------------------|-----|
| 19.4 | Penalized Splines for Longitudinal Data | 563 |
| 19.5 | Case Study                              | 565 |

xiv CONTENTS

|    | 19.6                                  | Fitting Smooth Curves to Individual<br>Longitudinal Data    | 570 |
|----|---------------------------------------|-------------------------------------------------------------|-----|
|    | 19.7                                  | Case Study                                                  | 572 |
|    | 19.8                                  | Computing: Fitting Smooth Curves<br>Using PROC MIXED in SAS | 576 |
|    | 19.9                                  | Further Reading                                             | 579 |
| 20 | Sample Size and Power                 |                                                             | 581 |
|    | 20.1                                  | Introduction                                                | 581 |
|    | 20.2                                  | Sample Size for a Univariate Continuous Response            | 582 |
|    | 20.3                                  | Sample Size for a Longitudinal Continuous Response          | 584 |
|    | 20.4                                  | Sample Size for a Longitudinal Binary Response              | 598 |
|    | 20.5                                  | Summary                                                     | 604 |
|    | 20.6                                  | Computing: Sample Size Calculation<br>Using Pseudo-Data     | 605 |
|    | 20.7                                  | Further Reading                                             | 609 |
| 21 | Repeated Measures and Related Designs |                                                             | 611 |
|    | 21.1                                  | Introduction                                                | 611 |
|    | 21.2                                  | Repeated Measures Designs                                   | 612 |
|    | 21.3                                  | Multiple Source Data                                        | 616 |
|    | 21.4                                  | Case Study 1: Repeated Measures Experiment                  | 617 |
|    | 21.5                                  | Case Study 2: Multiple Source Data                          | 620 |
|    | 21.6                                  | Summary                                                     | 625 |
|    | 21.7                                  | Further Reading                                             | 626 |
| 22 | Multilevel Models                     |                                                             | 627 |
|    | 22.1                                  | Introduction                                                | 627 |
|    | 22.2                                  | Multilevel Data                                             | 628 |
|    | 22.3                                  |                                                             | 630 |
|    | 22.4                                  | Multilevel Generalized Linear Models                        | 641 |
|    | 22.5                                  | Summary                                                     | 651 |
|    | 22.6                                  | Further Reading                                             | 652 |

# Appendix AGentle Introduction to Vectors and Matrices655Appendix BProperties of Expectations and Variances665Appendix CCritical Points for a 50:50 Mixture<br/>of Chi-Squared Distributions669

References

671

Index

695