LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Edited by Professor M. Reid Mathematics Institute, University of Warwick, Coventry CV47AL United Kingdom

with the assistance of
B. J. Green (Cambridge)
D. R. Heath-Brown (Oxford)
R. A. M. Rouquier (Oxford)
J. T. Stafford (Manchester)
E. Süli (Oxford)

The London Mathematical Society is incorporated under Royal Charter.

Graded Rings and Graded Grothendieck Groups

Roozbeh Hazrat

This study of graded rings includes the first systematic account of the graded Grothendieck group; a powerful and crucial invariant in algebra which has recently been adopted to classify the Leavitt path algebras.

The book begins with a concise introduction to the theory of graded rings and then focuses in more detail on Grothendieck groups, Morita theory, Picard groups and K-theory. The author extends known results in the nongraded case to the graded setting and gathers together important results which are currently scattered throughout the literature. The book is suitable for advanced undergraduate and graduate students as well as researchers in ring theory.

CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

Sur alquate to be a Contents

164

3.9.2 Aging of Z on Kar orbida has illes

	Intro	Introduction			page 1	
1	Grad	ded rings	s and graded modules	boband	5	
	1.1	Gradeo	d rings	21 M	6	
		1.1.1	Basic definitions and examples		6	
		1.1.2	Partitioning graded rings		10	
		1.1.3	Strongly graded rings		14	
		1.1.4	Crossed products		16	
		1.1.5	Graded ideals		20	
		1.1.6	Graded prime and maximal ideals		22	
		1.1.7	Graded simple rings		23	
		1.1.8	Graded local rings		25	
		1.1.9	Graded von Neumann regular rings		26	
	1.2	Gradeo	Graded modules			
		1.2.1	Basic definitions		28	
		1.2.2	Shift of modules		28	
		1.2.3	The Hom groups and category of graded	l modules	30	
		1.2.4	Graded free modules		33	
		1.2.5	Graded bimodules		34	
		1.2.6	Tensor product of graded modules		35	
		1.2.7	Forgetting the grading		36	
		1.2.8	Partitioning graded modules		37	
		1.2.9	Graded projective modules		41	
		1.2.10	Graded divisible modules		47	
	1.3	Gradin	g on matrices		49	
		1.3.1	Graded calculus on matrices		50	
		1.3.2	Homogeneous idempotents calculus		58	
		1.3.3	Graded matrix units		59	

		1.3.4 Mixed shift	60
	1.4	Graded division rings	64
		1.4.1 The zero component ring of graded simple ring	71
	1.5	Strongly graded rings and Dade's theorem	72
		1.5.1 Invertible components of strongly graded rings	78
	1.6	Grading on graph algebras	79
		1.6.1 Grading on free rings	79
		1.6.2 Corner skew Laurent polynomial rings	81
		1.6.3 Graphs	84
		1.6.4 Leavitt path algebras	85
	1.7	The graded IBN and graded type	94
	1.8	The graded stable rank	96
	1.9	Graded rings with involution	100
2	Grad	ded Morita theory	104
	2.1	First instance of the graded Morita equivalence	105
	2.2	Graded generators	109
	2.3	General graded Morita equivalence	111
3	Grad	led Grothendieck groups	122
	3.1	The graded Grothendieck group K_0^{gr}	124
		3.1.1 Group completions	124
		3.1.2 $K_0^{\rm gr}$ -groups	126
		3.1.3 $K_0^{\rm gr}$ of strongly graded rings	128
		3.1.4 The reduced graded Grothendieck group $\widetilde{K_0^{\rm gr}}$	130
		3.1.5 K_0^{gr} as a $\mathbb{Z}[\Gamma]$ -algebra	132
	3.2	$K_0^{\rm gr}$ from idempotents	132
		3.2.1 Stability of idempotents	137
		3.2.2 Action of Γ on idempotents	137
		3.2.3 $K_0^{\rm gr}$ is a continuous functor	138
		3.2.4 The Hattori–Stallings (Chern) trace map	139
	3.3	$K_0^{\rm gr}$ of graded *-rings	141
	3.4	Relative K_0^{gr} -groups	142
	3.5	$K_0^{\rm gr}$ of nonunital rings	145
		3.5.1 Graded inner automorphims	148
	3.6	$K_0^{\rm gr}$ is a pre-ordered module	149
		3.6.1 \Gamma -pre-ordered modules	149
	3.7	$K_0^{\rm gr}$ of graded division rings	152
	3.8	$K_0^{\rm gr}$ of graded local rings	158
	3.9	$K_0^{\rm gr}$ of Leavitt path algebras	160
		$3.9.1$ K_0 of Leavitt path algebras	161

		Contents	vii	
		3.9.2 Action of \mathbb{Z} on K_0^{gr} of Leavitt path algebras	163	
		3.9.3 K_0^{gr} of a Leavitt path algebra via its 0-		
		component ring	164	
	3.10	$G_0^{\rm gr}$ of graded rings	168	
		3.10.1 G_0^{gr} of graded Artinian rings	169	
	3.11	Symbolic dynamics and K_0^{gr}	172	
	3.12	$K_1^{\rm gr}$ -theory	177	
4	Graded Picard groups			
	4.1	Pic ^{gr} of a graded commutative ring	181	
	4.2	Pic ^{gr} of a graded noncommutative ring	184	
5	Graded ultramatricial algebras, classification via $K_0^{\rm gr}$			
	5.1	Graded matricial algebras	193	
	5.2	Graded ultramatricial algebras, classification via K_0^{gr}	198	
6	Graded versus nongraded (higher) K-theory			
	6.1	$K_*^{\rm gr}$ of positively graded rings	206	
	6.2	The fundamental theorem of <i>K</i> -theory	214	
		6.2.1 Quillen's K-theory of exact categories	214	
		6.2.2 Base change and transfer functors	215	
		6.2.3 A localisation exact sequence for graded rings	216	
		6.2.4 The fundamental theorem	217	
	6.3	Relating $K_*^{gr}(A)$ to $K_*(A_0)$	222	
	6.4	Relating $K_*^{gr}(A)$ to $K_*(A)$	223	
	References			
	Index		232	

and a second some carries publicated in terminon about the graded ring.

the large a be abelian group, and first on A suppose bonaction phone