Professor John Maynard Smith has written an account of a new way of thinking about evolution which has been developed in the last ten years. The theory of games, first developed to analyse economic behaviour, is modified so that it can be applied to evolving populations. John Maynard Smith's concept of an evolutionarily stable strategy is relevent whenever the best thing for an animal or plant to do depends on what others are doing. The theory leads to testable predictions about the evolution of behaviour, of sex and genetic systems, and of growth and life history patterns. This book contains the first full account of the theory, and of the data relevant to it.

The account is aimed at senior undergraduate and graduate students, teachers and research workers in animal behaviour, population genetics and evolutionary biology. The book will also be of interest to mathematicians and game theorists; the mathematics has been largely confined to appendixes so that the main text may be easily followed by biologists.

Cover design: James Butler

780521"288842

Contents

	Preface	vii
1	Introduction	1
2	The basic model	10
	A The Hawk-Dove game	11
	B A review of the assumptions	20
	C An extended model - playing the field	23
3	The war of attrition	28
4	Games with genetic models	40
	A The two-strategy game with diploid inheritance	40
	B Phenotypes concerned with sexual reproduction	43
	C The evolution of anisogamy	47
5	Learning the ESS	54
6	Mixed strategies - I. A classification of mechanisms	68
7	Mixed strategies – II. Examples	81
	A The sex ratio	81
	B Status in flocks	82
	C Dimorphic males	86
	D Ideal free distributions	90
	E Dispersal in a uniform environment	92
8	Asymmetric games – I. Ownership	94
9	Asymmetric games - II. A classification, and some	din 1-
	illustrative examples	106
10	Asymmetric games - III. Sex and generation games	123
	A Some theoretical considerations	123
	B Parental care	126
	C Games with cyclical dynamics	130

/i	Contents	
	D Sexual selection	131
	E Games with alternate moves	137
1	Life history strategies and the size game	140
2	Honesty, bargaining and commitment	147
	A Information transfer in animal contests	148
	B Bluff as a transitory phenomenon	151
	C Bargaining, territory and trading	151
	D Commitment	161
13	The evolution of cooperation	167
14	Postscript	174
	Appendixes	
	A Matrix notation for game theory	180
	B A game with two pure strategies always has an ESS	180
	C The Bishop-Cannings theorem	182
	D Dynamics and stability	183
	E Retaliation	188
	F Games between relatives	191
	G The war of attrition with random rewards	194
	H The ESS when the strategy set is defined by one or	
	more continuous variables	197
	I To find the ESS from a set of recurrence relations	198
	J Asymmetric games with cyclic dynamics	199
	K The reiterated Prisoner's Dilemma	202
	Explanation of main terms	204
	References	205
	Subject index	215
	Author index	222